A Large-Scale Analysis of
Deployed Traffic Differentiation Practices

Fangfan Li

Northeastern University

David Choffnes

Northeastern University

ABSTRACT

Net neutrality has been the subject of considerable public debate over
the past decade. Despite the potential impact on content providers
and users, there is currently a lack of tools or data for stakeholders to
independently audit the net neutrality policies of network providers.
In this work, we address this issue by conducting a one-year study of
content-based traffic differentiation policies deployed in operational
networks, using results from 1,045,413 crowdsourced measurements
conducted by 126,249 users across 2,735 ISPs in 183 countries/re-
gions. We develop and evaluate a methodology that combines
individual per-device measurements to form high-confidence,
statistically significant inferences of differentiation practices,
including fixed-rate bandwidth limits (i.e., throttling) and delayed
throttling practices. Using this approach, we identify differentiation
inboth cellular and WiFi networks, comprising 30 ISPs in 7 countries.
We also investigate the impact of throttling practices on video
streaming resolution for several popular video streaming providers.

1 INTRODUCTION

Net neutrality, or the notion that Internet service providers (ISPs)
should give all network traffic equal service!, has driven active
discussions, laws [2], and policies [14]. However, to date there have
been few empirical studies of ISPs’ traffic management policies that
violate net neutrality principles, or their impact on stakeholders
such as consumers, content providers, regulators, and legislators. In
this work, we fill this gap via a large-scale study of a common form
of net neutrality violations: content-based traffic differentiation that
limits throughput for specific applications.

A large-scale study of net neutrality violations and their
implications is long overdue, given that the most recent large-scale
audits of net neutrality came a decade ago and focused on either
backbone networks [30] or a single protocol (BitTorrent) [12]. In
the intervening decade, the Internet has evolved in two key ways
that require a new approach to auditing. First, today’s dominant
source of Internet traffic is video streaming from content providers,
not BitTorrent. Second, users increasingly access the Internet from
their mobile devices, often with a spectrum-constrained cellular
connection. There is a need to conduct a study of net neutrality
violations that takes these changes into account.

1With a notable exception being reasonable network management.

This is the extended version of our publication that appears in SIGCOMM 2019 [23], and includes
additional appendices that provide supplemental details about our analyses. These appendices were
not peer reviewed.

Tech Report, 2019

© 2019

Phillipa Gill

University of Massachusetts Amherst

Arian Akhavan Niaki

University of Massachusetts Amherst

Alan Mislove

Northeastern University

We address this need using 1,045,413 measurements conducted by
126,249 users of our Wehe app, across 2,735 ISPs in 183 countries/re-
gions. From this set of raw measurements, we identify 144 ISPs
with sufficient tests to confidently identify differentiation. Wehe
builds on prior work for detecting traffic differentiation over mobile
networks [18], however, while prior work focused on detecting
differentiation on a per-device basis, we leverage our large-scale
crowd-sourced data to develop more robust differentiation detection
techniques. We then apply these techniques to conduct the
largest-scale study of content-based differentiation practices to date.

The main contributions of this paper are the methods to detect
throttling using data from a large user base, analysis of this data, and
findings related to detecting fixed-rate throttling and their impact
on affected apps . Beyond technical contributions, our findings have
been used by a European national telecom regulator, the US FTC and
FCC, US Senators, and numerous US state legislators. To complement
this study and to help consumers and regulators make more informed
decisions, we maintain a public website with updated analysis and
data [7]. We now summarize our technical contributions.

Gathering a large dataset of content-based differentiation
practices (§3) We perform the largest data collection of content-
based differentiation practices, comprising more than 1,000,000 tests,
which we continue to maintain on an ongoing basis. We adapted
prior work [18] to enable such data collection at scale.

A methodology for reliably detecting fixed-rate throttling
from crowdsourced measurements (§4) Individual crowd-
sourced tests are subject to confounding factors such as transient
periods of poor network performance. To address this, we de-
velop a methodology that reliably identifies fixed-rate throttling
by leveraging tests from multiple users in the same ISP. We combine
Kolmogorov-Smirnov tests, kernel density estimators, and change
point detection to identify cases such as fixed-rate throttling and de-
layed throttling. We evaluated the methodology (§5) with controlled
lab experiments from the 4 largest US cellular ISPs and found the re-
sults of using our methodology on crowdsourced data are consistent
with lab experiments.

Characterizing differentiation affecting Wehe tests (§6)
We conduct a multi-dimensional study of deployed differentiation
policies measured by Wehe. We find different network providers
using different rate limits (e.g., 1.5 Mbps and 4 Mbps) and target-
ing a different set of apps (e.g., YouTube vs. Netflix). We also find
throttling practices that are poorly disclosed, falsely denied (by one
ISP), and that change during the course of our study. Importantly,
selective throttling policies potentially give advantages to certain

Tech Report, 2019

content providers but not others, with implications for fair competi-
tion among content providers in throttled networks.

Characterizing video streaming implications of throttling
(§7) We study how throttling in the US impacts video streaming
resolution. We study the video resolutions selected by popular video
streaming apps that are affected by throttling, and find examples
where throttling limits video quality. We also find many cases where
video players self-limit video resolution by default, in some cases
selecting a lower resolution than throttling allows. Finally, we ob-
serve that streaming sessions experience retransmission rates up to
23%, leading to significant wasted network bandwidth that can be
addressed through more efficient throttling implementations.

2 RELATED WORK

Traffic differentiation detection Traffic differentiation has
been the target of study for over a decade. Originally, popular
applications such as BitTorrent were studied by the Glasnost
project [12] which manually crafted measurements to simulate Bit-
Torrent and BitTorrent-like packet exchanges, followed by compar-
ing the throughput distributions of exchanges with and without Bit-
Torrent payloads. NetPolice [30] takes a different approach: detecting
differentiation in backbone ISPs by analyzing packet loss behavior
of several protocols (HT TP, BitTorrent, SMTP, etc.). Bonafide [11] is
designed to detect differentiation and traffic shaping in the mobile
ecosystem, but still relies on manually crafted files to specify pro-
tocols to test, supporting six application protocols. DiffProbe [19]
focuses on Skype and Vonage, and detects differentiation by com-
paring latency and packet loss between exposed and control traffic.
The Packsen [29] framework uses several statistical methods for
detecting differentiation and inferring shaper details. NANO [27]
uses passive measurement from users to infer the existence of traffic
differentiation.

A limitation of prior work is that they did not generalize beyond
a few tested applications, often used simulated traffic instead of
traffic generated by real applications, and did not work from mobile
devices. However, recent work [18, 22] showed that deployed
differentiation policies often only target specific applications based
on keyword-based deep packet inspection and thus are often not
triggered by generic testing traffic. Chkdiff [25, 26] and Molavi
Kakhki et al. [18] use application-generated traffic, but are not
evaluated at scale. As we discuss in the next two sections, we made
substantial changes to the measurement and detection methodology
to address the limitations of these approaches.

Identifying rate limiting Recent projects focus on identifying
rate limiting of Internet traffic via shaping and policing. The Shaper-
Probe [20] project detects traffic shaping using end-to-end active
probing with synthetic traffic, and it identified suspected shaping in
multiple ISPs; however, it is not deployable on mobile devices and
does not identify specific applications affected by shaping. Flach
et al. [15] quantify traffic policing for YouTube and its impact on
video-quality metrics, but this analysis does not generalize to other
video providers and requires access to a content provider’s servers
(which is impractical for most researchers). Our approach identifies
rate limiting for multiple applications without requiring access to
content providers’ servers.

Li.et al.

3 DATA COLLECTION

We now describe the data collected by the Wehe i0S and Android
apps, which detect content-based differentiation between the device
and a server under our control. Wehe is available to download from
the Google Play and iOS App Stores.

3.1 Methodology

Record and replay To test for differentiation, Wehe uses the
“record and replay” technique introduced by Molavi Kakhki et al. [18].
We first record the network traffic generated by an application (e.g.,
streaming a video using the YouTube app), and include this traffic
trace in the app. When a user runs a test, Wehe then replays this
traffic between the device and an Wehe server. We emphasize that
our tests do not contact content providers’ servers. Thus, all network
traffic exchanged between the Wehe app and server are identical to
what was recorded, with the exception of different IP addresses.
Wehe runs a series of back-to-back replay pairs. In each
back-to-back pair, the original replay contains the same payloads
as recorded (e.g., YouTube traffic). This exposes the original payload
to network devices such as those that use deep packet inspection
(DPI). The other replay in the back-to-back pair is the control replay,
which contains the same traffic patterns (packet sizes, timings) but
the original payload is obscured to evade detection by DPI devices
that often rely on keyword matching in their classification [22, 24].
For the control replay, Wehe inverts the original payload bits, a
technique that our prior work [24] found to evade DPI detection.
Note that we do not use random bytes because they were found to
trigger differentiation in ways that inverted bits do not [24].

Apps tested by Wehe For this study, Wehe uses traces recorded
from YouTube, Netflix, Amazon Prime Video, NBC Sports, Vimeo,
Spotify, and Skype. We selected the first five apps because video
streaming is a common target of traffic differentiation [17, 22]. We
include Spotify because some cellular plans indicate rate limits on
streaming audio, and Skype because a telephony app may compete
with cellular providers’ voice services. The traces in Wehe consist of
video streaming from the video apps, music streaming on Spotify,
and a video call on Skype. Note that the traces are recorded by the
Wehe team, and contain no information about the users running
the tests. We use the following symbols to represent each app test:
@ for YouTube, N for Netflix, @ for Amazon Prime Video, % for
NBCSports, O for Skype, @ for Spotify and b4 for Vimeo.

When running Wehe, users can select which apps to test, and
a test consists of up to two replay pairs. The Skype test uses UDP,
while the others use TCP. Among TCP tests, NBCSports and Spotify
use HTTP, and the others use HTTPS. Thus our approach supports
both plaintext and encrypted flows. For the tests that use HT'TPS, we
simply replay the exact same encrypted bytes over TCP connections
that we establish between the device running the Wehe app and a
Wehe server. We do not attempt to decrypt any recorded traffic, nor
do we need to. Note that since Wehe simply replays the trace as it was
recorded, Wehe does not incorporate any dynamic behavior (e.g.,
adaptive bitrate streaming) that the recorded app might incorporate.

We support UDP traffic in our tests, but at the time of writing have
not yet switched to YouTube traces that use QUIC. An important
open research challenge is how to emulate QUIC congestion control,

Large-Scale Analysis of Deployed Differentiation

given that its protocol headers are encrypted and we cannot trivially
distinguish new payload bytes from retransmissions.

Detecting differentiation for each test After replaying traces
for an app, Wehe checks for differentiation and displays the result
to the user. Wehe uses a Kolmogorov—-Smirnov (KS) test [16] to
compare the throughput distributions of the original and the control
replays of a given application trace. Wehe samples throughput using
fixed time intervals. The time interval for sampling is based on the
recorded traffic trace duration: if the replay takes t seconds when
recorded, each interval is /100 seconds. Because our record and
replay approach sends data no faster than it was recorded, we are
guaranteed to have at least 100 samples for each test. However, if the
test occurs in an environment where there is a bandwidth bottleneck,
the replay can take more than ¢ seconds. If so, we continue to sample
at the same rate after ¢ seconds, and thus would record more than
100 samples. Similar to Net Police [30], Wehe conducts Jackknife
non-parametric resampling to test the validity of the KS statistic.
Wehe indicates to the user that there is differentiation only if both
the KS test is statistically significant (i.e., p-value less than 0.05, and
the resampled KS tests lead to the same result 95% of the time) and
the difference in average throughputs is significant (i.e., at least a
10% difference in average throughput) [18].

3.2 Implementation

Prior work detected differentiation using packet captures recorded
at the replay server [18], assuming that packets received at the
server (e.g., TCP ACK packets) came directly from the client.
However, we found empirically that this is not the case, largely due
to transparent TCP proxies that split the end-to-end connection into
two TCP connections. In this case, the server cannot observe rate
limits imposed only on the client-proxy connection. To address this,
Wehe records traces both from the server side and from the client
via periodic throughput measurements collected at the application
layer (obtaining raw packet traces would require users to root their
phones, which we wish to avoid). We use both traces to identify
differentiation and the direction that is affected.

Prior work found that three back-to-back tests yielded low false
positive and negative rates for differentiation detection [18]. How-
ever, anecdotal reports from Wehe users indicated that the time
required to run these tests (16 minutes to test all apps) was a limiting
factor in using Wehe. To mitigate this issue, Wehe first analyzes the
result of one pair of back-to-back tests for an app. If there is no differ-
entiation detected, then Wehe does not run additional tests for the
app. If there is differentiation detected, Wehe runs an additional pair
of back-to-back tests and reports differentiation to the user only if it
is detected in both tests. The use of only one or two tests might cause
higher error rates in results reported to individual app users. In §4
we analyze data from all tests of the same app in the same ISP across
our user base to gain additional statistical confidence in our results.

3.3 Confounding factors and limitations

Wehe accounts for the following confounding factors when report-
ing results to users. First, bandwidth volatility (e.g., due to poor
signal strength, cross traffic, etc.) could cause Wehe to incorrectly
identify differentiation. To reduce the impact of this, Wehe performs
multiple back-to-back tests and reports differentiation to users

Tech Report, 2019

only when at least two pairs of tests indicate differentiation. This
conservative approach may result in false negatives, where Wehe
does not report differentiation to the user. In the next section, we
discuss how we aggregate data across our user base to mitigate false
negatives and positives due to volatility.

Second, the network may retain history such that one replay
test impacts the treatment of the next replay. We instituted random
ordering of original and bit-inverted replays, and found no evidence
of history affecting our results.

Third, Wehe is subject to the same limitations prior work [18]:
it cannot detect differentiation based on IP addresses, peering
arrangements, interconnection congestion, traffic volume, or
other factors independent of IP payloads. Detecting differentiation
based on IP addresses, peering arrangements, and interconnection
congestion would seem to require access to content servers (and/or
access to their IPs)—Wehe alone cannot detect such cases because
the paths our measurements follow potentially use different links
than the ones between clients and content servers.

Though outside the scope of this work, Wehe can be augmented to
detect differentiation based on traffic volumes. Specifically, our tests
preserve the recorded application’s content stream in terms of packet
timings and packet sizes, and could trigger differentiation based on
those properties. However, both the inverted and original payloads
could trigger the same behavior, so we would need to add a second
control test (that does not look like any app’s traffic volumes) to
identify differentiation. Similarly, Wehe could incorporate tests using
the real apps under test, in addition to our controlled ones using Wehe,
to detect differentiation based on factors other than payload contents.
We consider such approaches to be interesting areas for future work.

Last, there is no known API to determine a user’s data plan or
any differentiation policies on the plan, so we cannot compare Wehe
findings with stated policies.

3.4 Ethics

Our work involves human subjects, and we took care to follow
community best practices when conducting our work. Wehe collects
anonymized data from user devices as part of an IRB-approved study.
First, as described below, we collect only data that we deemed neces-
sary to characterize differentiation and assess confounding factors.
Second, when Wehe is opened by the user for the first time—and
before any data is collected—users undergo informed consent via an
IRB-approved consent form that specifies the data collected and how
it is used. Once users consent, they can initiate tests; if the user does
not consent, the app closes immediately. Third, data collection occurs
only when users initiate tests, and users can opt out of data collection
(and request deletion of data) at any time. Our data-collection and
management process has been deemed GDPR-compliant.

3.5 Dataset

The data generated by Wehe tests includes throughput samples,
as well as the following for each back-to-back test: (1) the server
timestamp at the beginning of the test, (2) the first three octets (/24)
of the client’s IP address, (3) the client’s mobile carrier as reported
by the operating system, (4) the client’s operating system and phone
model, (5) the network connection type (WiFi or cellular), and (6)

Tech Report, 2019

Replay Users (%) | Cellular Tests | WiFi Tests
3 YouTube 106,813 (85%) 97,009 149,850
N Netflix 83,369 (66%) 66,320 112,473

@ Amazon 77,212 (61%) 61,851 102,529
& Spotify 65,644 (52%) 43,306 90,963
6 skype 60,658 (48%) 37,589 72,250
mVimeo 49,701 (39%) 33,538 67,333
Y% NBC Sports 49,605 (39%) 38,701 71,701
Total 126,249 378,314 667,099

Li.et al.

Table 1: Overview of Wehe data analyzed in this paper.

the coarse-grained GPS location (collected with user permission).

We describe the reason for collecting each of these items below.

The timestamp allows us to identify trends over time. The
carrier name allows us to identify the cellular provider for tests on
cellular networks. The client’s anonymized IP address information
and network type allow us to identify the ISP being tested for
WiFi connections?, and to identify whether there are subnet-level
differences in detected differentiation.

The coarse-grained GPS location (10 km precision) allows us
to identify regional differences in ISPs’ policies (e.g., in response
to state-level net neutrality regulations in the US). The Wehe app
first requests the geolocation of the user via the operating system’s
precise GPS location feature, the Wehe server then geo-codes the
geolocation (i.e., looking up the city/state/country) and stores
only the truncated geolocation (i.e., with 10 km precision). Users
can choose not to share their GPS locations without limiting app

functionality. In 15% of tests, the users opted out of location sharing.

The OS and phone model allow us to distinguish whether ISPs
discriminate against these factors, or to what extent OSes and phone
models might bias the results.

Summary of dataset
Between Jan. 18, 2018 and Jan. 24, 2019, 59,326 iOS users and 66,923
Android users installed Wehe and ran at least one test.

In total, Wehe conducted 1,045,413 tests. We plot the distribution
of tests over time in Figure 2 (note the log scale on the y-axis). We
observe a peak of 77,000 tests on January 19, 2018, when a news
article raised awareness of the app [4]. There were three other press
events that raised awareness of the app; we still observe several
hundred tests per day. Wehe users come from at least 183 countries
based on geolocation.

Like any crowdsourced dataset, ours is subject to several biases
that may impact the generality of our findings. We cannot control
when, where, or why users run our tests, and thus we do not have
uniform or complete coverage of any ISP or app tested. Figure 1
shows the distribution of test locations, where the intensity of the
color for each country reflects the number of tests completed in the
country. More than 60% of our tests come from the US, most likely
due to the recent changes in net neutrality rules combined with
US-centric press articles. The phone models used in our tests skew
toward higher-end devices, Table 2 shows the top phone models and
OSes for users in the Wehe dataset. A large fraction of our US tests
come from large cellular providers, meaning lower-cost providers
(e.g., MVNOs) are under-represented.

Despite these biases, our analysis covers 2,735 ISPs® in 183
countries, and identifies differentiation in 30 ISPs in 7 countries. We

2Using the “OrgName” field from whois queries to regional Internet registries.

3We noticed that some ISPs used multiple “OrgNames” (e.g., Bouygues and BouyguesTelecom); thus,

some ISPs may be counted multiple times.

We summarize our dataset in Table 1.

iOS Android
Users 59,326 66,923
i0S11.2.2 15% Android 7.0 17%
i0S11.2.5 7% Android 8.0.0 9%
Top five OS versions i0S 12.1 5% Android 8.1.0 . 8%
i0S 11.4.1 4% Android 7.1.1 5%
i0S 11.2.6 3% Android 6.0.1 4%
iPhone X 19% Pixel 2 XL 2.2%
iPhone 7 14% Samsung S8 1.9%
Top five phone models iPhone 6s 12% Pixel XL 1.8%
iPhone 7 Plus | 11% Samsung S8+ 1.8%
iPhone 6 7% Pixel 1.7%

Table 2: Summary of Wehe users’ phone models. There is a
bias toward newer phones and OSes, with devices capable of
displaying HD content.

-4

e 4N

4 =2

100 10k ™M

Figure 1: Number of tests per country (log scale). 15% of our
tests do not have GPS data (e.g., if the user did not provide
permission to collect GPS locations), and we excluded them
from any geolocation-based analysis.

i — i
2. [

é’10 \:\M w fb ‘ ﬂﬂ\\

5103) \“J‘ | \ﬁ(‘\

. hwi NMW N‘WM(HRWW/\

o> g g ol 2] A o>
@ K% 42" 42" K3 A2 "
2 20 20 20 10 20 20

Figure 2: Number of Wehe tests per day (log scale).

believe this to be the largest study of content-based differentiation
practices.

4 DETECTING DIFFERENTIATION

We now describe our methodology for identifying and character-
izing differentiation using aggregate data collected from multiple
users and tests. Specifically, we focus on how we detect fixed-rate
bandwidth limits, which we refer to as throttling. This is by far the
most common type of differentiation that we observed, and the rest
of the paper focuses exclusively on fixed-rate throttling.

Our approach relies on the following steps. Similar to prior work,
we use the KS test statistic to detect differentiation by comparing
throughput distributions for a collection of original replays to those
from control replays [18] (§4.1). For replays where differentiation is
detected, we detect one or more throttling rates using kernel density
estimation (KDE), under the assumption that throughput samples

Large-Scale Analysis of Deployed Differentiation

from clients throttled at the same rate will cluster around this value
(§4.2).

Using this approach to detect throttling rates works well if an
entire replay is throttled; however, we find in practice that certain
devices enforce fixed-rate throttling only after a burst of packets
pass unthrottled, as previously reported by Flach et al [15]. We use
change point detection on throughput timeseries data to identify
delayed throttling periods (e.g., if they are based on time or number
of bytes) and omit unthrottled samples when determining the
throttling rate (§4.3).

4.1 Identifying differentiation

When identifying differentiation using crowdsourced data, we
group tests according to the ISP and the app being tested (e.g.,
YouTube, Netflix, etc.), which we refer to as an ISP-app pair. We
use all tests for a given ISP-app pair, where each test consists
of one original replay and one bit-inverted replay regardless of
whether throttling was detected individually. We focus on ISPs
with enough tests to apply the detection methodology; namely,
we conservatively require 100 total tests or 10 tests where Wehe
identified differentiation.? In total, 144 ISPs meet the criteria.

Our null hypothesis is that there is no differentiation for an
ISP—app pair. If this is the case, the distribution of throughput
samples observed for original and bit-inverted replays should be
similar. To test this, we form two distributions: O is the collection of
all throughput samples for all original replays for the ISP-app pair
and I is the collection of all throughput samples for all bit-inverted
replays for the ISP-app pair. Note that the number of samples in O
and I are identical by construction (we include only complete pairs
of back-to-back replays).

We then test whether O and I are drawn from different distribu-
tions by using the Jackknife re-sampling KS Test described earlier.
Specifically, we reject the null hypothesis if the KS-Test indicates
different distributions with a p-value is 0.05 or less, and the random
subsamples of the distribution yield the same result 95% or more
of the time.

By aggregating large numbers of tests, we can mitigate the
impact of confounding factors such as (random) network dynamics,
which should affect both distributions roughly equally given the
large number of samples we examine. If we detect differentiation
for an ISP-app pair, we next determine whether there is fixed-rate
throttling for the pair.

4.2 Inferring throttling rates

The technique we use to detect fixed-rate throttling for an
ISP-app pair is based on the hypothesis that when an ISP deploys
content-specific fixed-rate throttling, this policy affects multiple
users (e.g., those with the same data plan). If this occurs, we expect
that multiple tests would be throttled in the same way, and thus
the distribution of average throughputs for these tests would be
centered at the throttling rate instead of being randomly distributed
across the range of available bandwidth for a network.

To detect when average throughputs group around a given
rate, we use kernel density estimation (KDE), which estimates the
probability density function (PDF) of random variables (in our

4These threshold were picked because they avoided false positives for detecting differentiation.

Tech Report, 2019

case, throughput). The intuition behind using KDE is that if the
random variable (throughput) contains many samples at or near
a certain value, the value should have a probability density that is
relatively large. Thus, fixed-rate throttling should lead to relatively
large probability densities at or near the throttling rate when using
KDE. Note that KDE analysis may yield a PDF that has multiple
local maxima, meaning the approach can be used to detect multiple
throttling rates (or access technology limits).

There are two key challenges for using KDE effectively to identify
fixed-rate throttling. First, we must determine what thresholds to use
for identifying local maxima in the PDF that correspond to fixed-rate
throttling. Second, we must eliminate confounding factors such as
rate limits that are not based on the content of network traffic.

Setting thresholds for detection For the first challenge, we
use the following heuristic. We assume that at least some fraction
f of the total throughput averages, n, for an ISP-app pair are at the
throttling rate, and f represents our detection threshold (i.e., we can
detect fixed rate throttling affecting at least f *n tests). We then use
an approximation that the remaining (i.e., unthrottled) samples are
randomly distributed across the available bandwidth for the ISP.3
Finally, we generate data according to this model, run KDE (using a
Gaussian kernel with a bandwidth of 0.1), determine the density for
the f throttled samples and use that as our detection threshold t.

More specifically, for each ISP-app pair we find the number
of replays n and the average throughput range [x, y]. We then
construct a distribution consisting of (1 — f) * n data points with
values uniformly distributed between x and y, and f * n data points
with the value (y—x)/2. We run KDE on this distribution, and set
our detection threshold ¢ to the density value at (y—x)/2 (containing
a fraction f of the values). We evaluated the methodology with
f=0.02 in §5, and we found no false positives or negatives.

Eliminating confounding factors The heuristic above identi-
fies characteristic throughput values containing more samples than
would be expected from a uniformly random distribution; however,
not all such values are due to fixed-rate throttling. For example, an
ISP may impose rate limits on all traffic for a device (e.g., due to us-
age or access-technology limits). Importantly, such behavior should
impact both the original replays and the bit-inverted replays.

To eliminate such cases, we first remove from consideration
any average throughput values that have high density in both
the original and bit-inverted distributions. Next, we include only
throughput values with high density and that correspond to
throttling rates observed by Wehe tests that indicated differentiation
to the user. For this, we run the same KDE analysis described above,
but only on tests where the Wehe app identified differentiation.

As an example of this approach, the left plot in Figure 3 shows
a histogram of average throughput values for all YouTube original
replays over Sprint, and the estimated PDF (grey curve) from running
KDE. The horizontal line indicates our detection threshold, ¢, which
identifies high-density values near 2 Mbps and 10 Mbps. The right
figure plots the same, but for the bit-inverted replays; note that
both original and bit-inverted distributions have above-threshold
density values at 10 Mbps, indicating that this throughput value
is not due to content-based differentiation. Finally, we confirm

5This is not true in practice, but serves as a useful first-order approximation to identify throughput
values of interest.

Tech Report, 2019 Li.et al.

035

2 500- | -0.302

& 400- | -0.25 §

G 300 1 | -0.205

& III ﬂ | I = O 1 1 5 -g

£ 200 I il it il -0.10‘_§

2 100 Al Ot o, I 6,05
o .|||||IIIIIIIIIIIIIIIIII||IIn....... .||||II||.n............. L666=

0 10 '

2 4 12
Average throughput (Mbps)

Average throughput (Mbps)

Figure 3: Identification of throttling rate. The x-axis is the average throughput, and the y-axes are a histogram of tests (bars)
and probability density function (PDF, gray curve) of average throughputs for all YouTube original replays (left) and all
YouTube bit-inverted replays (right) from all tests in Sprint network. The horizontal line is the density threshold for detecting
potential throttling rates, with green dots are the values above the threshold. We remove values that appear in both original

and bit-inverted, leaving 2.0 Mbps as the detected throttling rate.

N
o

—— 1.5 Mbps

=
w

w

Throughput (Mbps)
=
o

pohi IS YRR PSRN UUTYTIN DUV O WY VY
0 A vt e Lk L VAL Mt | B e Mt i
0 10 20 30 40 50 60 70

Time (s)

Figure 4: Throughput over time for Netflix tests over T-
Mobile, showing delayed throttling. Note that the first few
seconds of the transfer include rates up to 20 Mbps, after
which they drop to 1.5 Mbps (horizontal line).

that tests where the Wehe app indicated differentiation exhibited
throttling at 2 Mbps using KDE analysis, and conclude that 2 Mbps
is the throttling rate for this ISP-app pair.

4.3 Accounting for delayed throttling

The methods described so far in this section assume that if fixed-rate
throttling occurs, it affects the entirety of a Wehe test experiencing
throttling. In the case of T-Mobile, we found empirically that this
assumption was violated because they engage in delayed throttling,
previously reported by Flach et al. [15]. Figure 4 shows a timeseries
of throughput for a Netflix replay that is subject to this policy:
initially the transfer achieves throughput up to 20 Mbps; afterward,
the transfer drop to 1.5 Mbps (horizontal line).

Previous work found that delayed throttling was implemented by
limiting the number of bytes that are unthrottled, and identified the
behavior using the number of bytes that are transferred before the
first packet is dropped [15]. In our work, we seek to avoid assump-
tions about whether such delayed throttling is based on bytes or time,
and to use techniques that are insensitive to packet drops caused
by reasons other than delayed throttling. Instead, we assume that
a detectable delayed throttling session will have at least one phase
change, and that all tests for an ISP-app pair affected by delayed throt-
tling will experience the same delay (i.e., number of seconds or bytes).
Thus, to detect delayed throttling for an ISP-app pair, we use change
point detection (to identify the phase change) and KDE to identify
whether the change occurs after a number of seconds or bytes.

Our null hypothesis is that there is no delayed throttling. If
this were true, a phase change could be caused by reasons such
as bandwidth volatility, and we would expect that the delay would
be randomly distributed. To test this hypothesis, we investigate
only tests for an ISP-app pair with exactly one phase change, and
determine the distribution of delays.

To detect phase changes, we use the PELT algorithm [21] and
filter out any tests that do not have exactly one change point. We
tuned the detection algorithm so that it would detect change points
from tests where we replayed Netflix on T-Mobile’s network using
our lab devices. To determine whether the change point indicates
statistically significant throughput on either side of the boundary,
we use a KS test to compare the distributions of throughput before
and after the change point. If they are different, we add the change
point time and bytes to the list of change points for the ISP-app pair.

After gathering lists of change points, we use KDE® to determine
whether the change points for the ISP-app pair are randomly dis-
tributed or instead cluster together around a time or number of bytes.
Ifthereis arelatively large density value at a given number of bytes or
time, then we reject the null hypothesis and flag the ISP-app pair as ex-
periencing delayed throttling, according to bytes or time, whichever
has the largest density value. As an example, Fig. 5 shows the distri-
bution and estimated PDF of delayed throttling bytes for Netflix on T-
Mobile, where most of the change points are detected around 7 MB.”

If delayed throttling is detected, we filter out throughput samples
during the delay and detect the throttling rate as described in the
previous section.

4.4 Limitations and Caveats

The methodology for detecting fixed-rate throttling presented in
this paper is subject to the following limitations.

Differentiation not based on content ~ We focus on detecting
content-based differentiation, and do not detect differentiation based
on IP addresses, DNS lookups, or active probing. For example, Wehe
does not detect differentiation for its YouTube tests in mainland
China because YouTube is blocked in China via active probing [13]
instead of DPL

OWith an empirically derived threshold density of 0.1.
"The change point times have substantially lower density.

Large-Scale Analysis of Deployed Differentiation

0.7
o 500- T 0.62
& 400- k »o_5§
Y o
o 300 il o3
2200 i 03t
2100- A Ldll 015
. e O3
0 2 4 6 8 10 12 14 '
Megabytes

Figure 5: Detecting delayed throttling bytes for Netflix in
T-Mobile. For each change point (in bytes) on the x-axis, the
figure shows a histogram and estimated PDF generated from
KDE. The green dot (at 7 MB) indicates the detected number
bytes before throttling begins.

Record/replay limitations The recorded traffic that we use
for an app in Wehe’s replay tests may not always match the traffic
generated by the app. For example, if a video provider switches from
HTTP to HTTPS, our tests would be out of date until we create a
new recording. Likewise, a throttling device may update its rules for
detecting traffic before we deploy a new recording, and this could
lead to false negatives. We periodically check for changes to apps that
we testin Wehe, e.g., we updated our recordings in mid-January, 2019
after Amazon Prime Video changed from using HTTPS to HTTP.

Detection limits ~ We can find evidence of fixed-rate throttling
only when we have sufficient tests (and a sufficient fraction of tests
being throttled to the same rate) from an ISP to obtain statistical
significance. We detected differentiation for 39 ISPs, but we see no
evidence of fixed-rate throttling for 9 of them. Specifically, for these 9
cases we found differences between original and bit-inverted average
throughputs, but we did not detect fixed-rate throttling after running
KDE. We do not know the root causes for these cases.

5 EVALUATION OF DETECTION METHOD

We now evaluate our detection method using controlled experiments
from the four largest US cellular providers. Ideally, we would
compare our detection results with ground-truth information from
each ISP in our study, but gaining access to each network in our
crowdsourced data would be infeasible. Further, even if we had this
information, we could not control for confounding factors such as
varying network conditions, the user’s data plan or usage history.

Instead, we validate that our detection methodology produces
findings that are consistent with controlled experiments performed
in our lab. For the largest four US carriers, we do find consistent
results—our lab tests indicate content-based differentiation and
fixed-rate throttling that matches results produced by our analysis
of data from Wehe users.

5.1 Lab experiment setup

We purchased SIM cards from AT&T, Sprint, T-Mobile and Verizon.

We intentionally purchased prepaid plans that mention indicators
of throttling practices, such as “video streaming at 480p” or “video
optimized streaming.” Note that none of the disclosures indicated
which video providers are targeted for throttling, nor how the
targeting is done. We conducted lab experiments in Jan. 2018, May

Tech Report, 2019

2018 and Jan. 2019 for AT&T, T-Mobile and Verizon, and the tests for
Sprint only in January, 2019 due to difficulty acquiring a prepaid SIM.

For each experiment, we ran each of the 7 Wehe tests on each
SIM card 10 times. We include two sets of tests for Vimeo (with
two different domains) and Amazon Prime Video (one using HTTPS
and one using HTTP) in Jan. 2019 to reflect the change in how the
service delivered video that month.

Since the data plan disclosures did not indicate which video
services were throttled, we do not have ground truth for which Wehe
tests should be affected. Instead, our hypothesis is that if our lab
tests are affected by content-based differentiation, then we should
be able to detect exactly which content triggers throttling. We use
the “binary randomization” method [22] for identifying content
that triggers DPI classification rules used in throttling deployments

5.2 Comparison with Wehe data

To compare the lab findings with crowdsourced Wehe data, we
build subsets of Wehe data, one each from Jan., 2018 and May 2018,
and two from Jan. 2019 to reflect updated recordings released that
month. We then use the methodology from the previous section
to detect fixed rate-throttling and compare our findings with those
from lab experiments. Additional findings from our lab setting are
discussed in Appendix A.

Table 3 presents a summary of findings, showing that our lab
tests and crowdsourced data are consistent. There are at least three
columns for each ISP-app pair, representing tests from Jan., 2018,
May 2018 and Jan., 2019. There is an additional column for Amazon
and Vimeo where we separate out the tests based on whether they
were done using older (the third column) or newer traces (the
fourth column). A shaded cell indicates that our method detected
differentiation using crowdsourced tests for that ISP-app pair from
that specific month, while a white cell means that we did not. A

shows that the result from Wehe data matches the lab experiment
for an ISP-app pair during that month, and a “-” indicates cases
where we have no lab experiments (January/May 2018 for Sprint).

Table 3 shows that all cases of throttling in lab experiments were
also detected in Wehe tests. We could not verify consistency for all
Wehe crowdsourced findings; namely, our tests indicate throttling
of Skype video in the first nine months of 2018, but we did not have
a Sprint SIM for lab tests then.

6 CHARACTERIZING DIFFERENTIATION

We now present our findings from all Wehe tests in our dataset. In
this section, we focus on cases where throttling is detected for at
least one ISP-app pair. Table 4 summarizes the results. Additional
detail of the findings in Table 4 are presented in Appendix C. While
the majority of tests come from WiFi networks, the majority of
detected differentiation occurs in cellular networks. We discuss our
findings in more detail below.

6.1 Identified differentiation

We identified 30 ISPs in 7 countries that throttle at least one Wehe
test. Nearly all cases of detected throttling affect video streaming
services, with YouTube being throttled the most often (25 cases),
and Vimeo being throttled the least (3 cases).

Tech Report, 2019

o N a

Li.et al.

2 V] (S =)

01/18 | 05/18 | 01/19 | 01/18 | 05/18 | 01/19 | 01/18 | 05/18 | 01/19 | 01/19" | 01/18 | 05/18 | 01/19 | 01/18 | 05/18 | 01/19| 01/19" | 01/18 | 05/18 | 01/19 | 01/18 | 05/18 | 01/19

AT&T
Verizon
T-Mobile

Sprint =

Table 3: Comparison of crowdsourced and lab results on four US mobile carriers in Jan. 2018, May 2018, and Jan. 2019. There is
an additional column (’) for new Amazon and Vimeo traces recorded in Jan. 2019. A shaded box indicate throttling was detected

using crowdsourced data; otherwise throttling was not detected. A
means we do not have a lab experiment.

« »

lab experiment results, an

Our methodology did not detect any ISP throttling of Spotify tests
in our data, and detected throttling of Skype video tests only in Sprint
(§6.3), Boost Mobile (which is owned by Sprint), and the United Arab
Emirates (UAE) on both WiFi and cellular connection. In the UAE,
the “throttling” is to zero (i.e., Skype tests are blocked), reportedly
because Skype provides an unlicensed VoIP service in the country.

The most common detected throttling rate is 1.5 Mbps (12 cases).
These rates typically correspond to ISPs that disclose data plans
offering low-resolution video streaming, a topic we investigate in §7.
Besides blocking, the lowest throttling rate detected is 0.5 Mbps from
Boost Mobile, and the highest detected throttling rate is 6 Mbps from
Start Communications, a regional ISP based in Ontario, Canada.

Throttling viaWiFi Inthe vast majority of ISPs tested via WiFi,
our methodology did not detect throttling. The exceptions were the
UAE blocking Skype (1 instance), and five other providers in North
America. At least three of these five (Viasat, Hughes and NextLink)
are satellite providers, and are likely more bandwidth constrained.
While we cannot confirm the type of network for VianetTV and
Start Communications, Vianet’s website indicates that they offer
residential plans that carry Internet traffic over cellular connections.
Thus, the majority of detected throttling over WiFi occurred in
networks that carry traffic over long-range wireless networks.
Throttling over cellular connections Most cellular throttling
comes from providers in the US. We detected differentiation in nearly
every major US cellular ISP, and we found all these throttling prac-
tices started before June 2018 (i.e., when the FCC rolled back restric-
tions on throttling [5]). While the number of detected cases in the
US might be due to the bias in our dataset, it is in part due to the
regulatory regime. For example, we do not detect throttling from
cellular ISPs in France, where we have a large sample size, and where
the practice is illegal. One notable exception is Google Fi, which did
not throttle any of our tests.

6.2 Variations in detected throttling

Not all tests for each ISP-app pair in Table 4 are throttled. We now
investigate several potential root causes for the behavior.

Policy changes over time One explanation for non-uniform
throttling of Wehe tests is that throttling policies changed for ISP-
app pairs during our study. We test this by comparing the detected
throttling rates and fraction of throttled tests over time. The number
of tests per ISP-app pair varies considerably over time, so we use
the following approach to test sample sizes with sufficient power
to draw conclusions about policy changes. For each ISP-app pair,
we divide tests into periods, each with a minimum of 100 total tests
and 10 throttled tests. If the same rate(s) and a similar fraction of
throttled tests are observed in all periods, we conclude there is no

indicates that result from crowdsourced data matched the

Country | ISP | Throttled Apps | Rate(s) | Tests
WiFi network
Canada Start Comms. a K3 6 Mbps 126
Canada ViaNetTV oON 1 Mbps 45
UAE Etisalat (S} 0 Mbps 23
Us Hughes Net. Sys. @N 1 Mbps 81
uUs NextLink l! " a , S, ﬂ 4 Mbps 72
us ViaSat oN 1 Mbps 112
Cellular network
Canada Rogers ON 1.5 Mbps 4479
Canada SaskTel N 1.5/3 Mbps 61
Chile Entel o 1.5 Mbps 30
Germany | Telekom DE o a 1.5 Mbps 178
Israel HOTmobile o 1.5 Mbps 23
UAE Etisalat Q 0 Mbps 73
UAE du (S} 0 Mbps 44
Us AT&T N 15Mbps | 46,013
Us BoostMobile o, ", a ,e 0.5/2 Mbps 792
UsS Cellcom [~} “, a 4 Mbps 97
Us Cricket D a 1.5 Mbps 1,224
Us CSpire ON 1 Mbps 41
Us FamilyMobile @Na 1.5 Mbps 106
Us GCI ON a 9% | 172Mbps 153
Us Towa/iWireless ONa 1.5/3 Mbps 76
Us MetroPCS ONa 1.5 Mbps 2,135
Us Sprint oDNag 2 Mbps 35,295
Us T-Mobile @Na il | WM g0
P T (delayed)
Us Tracfone Wireless D a 2 Mbps 410
Us Verizon @Na 2/4Mbps | 69,016
Us Visible oN 2 Mbps 52
Us XfinityMobile D, “, a 2 Mbps 131
UK giffgaff ON 1 Mbps 58
UK 02 ON 1.5 Mbps 210

Table 4: ISPs where we detect differentiation, the throttling
rates, apps affected, and the number of Wehe tests in the ISP.
A more detailed version is in Table 7.

policy change over time. We consider only two periods that meet
this criteria: periods of one month, or periods of 6 months. The latter
divides data into periods before and after the US rolled back net
neutrality protections in June, 2018.

The monthly analysis covers AT&T, Sprint, T-Mobile, Verizon,
and MetroPCS, and the biannual analysis covers BoostMobile,
cricket, 02, and Tracfone Wireless. For the vast majority of cases,
we see the same throttling rate and similar fractions of throttled
tests during the study period, indicating that most policies are stable
over the course of one year, and that the throttling policies were
in place even before new FCC rules permitted them in June, 2018.

For T-Mobile, we detected that Vimeo tests are throttled only
after Nov., 2018, and a small fraction of YouTube tests were throttled
at 2 Mbps (instead of 1.5 Mbps) only in Jan. 2019. For Sprint, we
found that Skype video tests ceased to be throttled after Oct., 2018.
We detected no changes in other policies.

Time-of-day =~ We now investigate the role time-of-day plays in
throttling, in light of claims that throttling is necessary to prevent
overloading the network during times of heavy usage [8]. If this were

Large-Scale Analysis of Deployed Differentiation

true, we expect to see higher incidence of throttling during a cellular
network’s busy hours (e.g., 8am to midnight) compared to overnight
(e.g., midnight to 8am). We test the hypothesis by grouping tests into
day and night using busy hours identified in prior work [28], and
checking whether the fractions of the throttled tests are different
(e.g., more tests are being throttled during the day).

Specifically, for each ISP-app pair we denote the fraction of
throttled tests as f, number of total daytime tests D (d of which are
throttled), and N total nighttime tests (n of which are throttled). If
there is no time-of-day effect, the number of throttled tests should
be D * f during the day and N * f during the night. We run a
chi-squared test comparing the actual number of throttled tests (n
and d) with the expected number of throttled tests (D* f and N* f); if
the p-value is less than 0.05, we conclude there is a time-of-day effect.

Out of the 77 ISP-app pairs we detected throttling, 71 of them
include tests both during the day and night; of these we find no
evidence of time-of-day effect for 60 cases. Of the remaining 11,
four have fewer than 30 tests and thus limited statistical power, and
we manually investigated the remaining 7 ISP-app pairs. For these
cases (e.g., YouTube tests on Verizon, expanded on in Appendix B),
we found the opposite result as our hypothesis: the fraction of tests
throttled during busy periods decreased compared to non-busy
periods. This could be due to a different set of users with different
throttling policies, or it could be due to a lack of sufficient available
bandwidth to detect throttling. Our data supports the latter explana-
tion, because during busy hours we see a larger fraction of original
and bit-inverted tests with throughput lower than the throttling rate.

Geographical differences = We investigated whether there are
geographic differences in throttling practices, e.g., one region is
affected more than another. This could be due to factors such as
state-level net neutrality laws or a regional deployment of throttling
(e.g., affecting a subset of a provider’s packet gateways). We focus on
the US-based ISPs (where we have the most samples), and conduct a
state-level regional analysis. Our finding is that there are differences
in throttling experienced by Wehe users in each state, but these
variations are not persistent and are consistent with random noise.

Mobile OSes = We consider whether the mobile OS plays a role
in whether a given client will be throttled or not. We analyzed the
fraction of tests for an ISP-app pair affected by differentiation for
i0S and Android, and found that the top four US cellular providers
have similar throttling rates for both mobile OSes (see Appendix B
for details).

IP prefixes = We next consider whether throttling affects only
certain IP prefixes assigned to clients. We first grouped the tests
according to the routable IP prefix that the client’s IP address belongs
to, then determined the fraction of throttled tests for each prefix. If
differentiation is implemented on a per-prefix basis we would expect
a bimodal trend with prefixes having either no cases of throttling, or
nearly all tests experiencing throttling. However, this is not what
we observe.

For each ISP-app pair, we calculated the fractions of throttled
tests for each IP prefix, and then checked the standard deviation
of the fractions, if the distribution is bimodal,we would expect a
high standard deviation. In more than 87% of the cases, we observe
a standard deviation of less than 0.2; we manually checked the
remaining cases and did not see a bimodal trend.

Tech Report, 2019

Other possible explanations Variations in throttling could
be due to ISPs offering different service plans and features, only
some of which include throttling. When visiting websites for several
ISPs where we detected throttling, we found options to subscribe
to (more expensive) plans that did not limit video streaming (e.g.,
ViaSat’s Platinum 100 plan), and/or features to disable throttling
(e.g., AT&T’s Stream Saver). Because our dataset does not include
plan information, we cannot quantify the impact of these factors.

6.3 Case studies

We now present several notable findings using our methodology on
crowdsourced Wehe data from the top four US carriers. A common
case is presented in Fig. 6(a), depicting CDF of average throughput for
original and bit-inverted YouTube replays. The vast majority of orig-
inal samples cluster around 1.5 Mbps (the detected throttling rate)
while the bit-inverted replays are (mostly) evenly distributed across
the throughput range. We present additional findings in Appendix D.

Multiple throttling rates for the same ISP-app pair = KDE
analysis revealed that Verizon has two throttling rates, one at 4 Mbps
(the majority of throttled tests) and the other at 2 Mbps. We show
this using a CDF of average throughputs in Fig. 6(b). We believe
this is due to different plans offered by Verizon; e.g., in Dec. 2018
their “go unlimited” plan included “DVD-Quality Streaming (480p)”
while their “beyond unlimited” plan allowed “HD-Quality Streaming
(720p)” [6].

Small fraction of tests affected by throttling Our methodol-
ogy identifies throttling in Sprint, despite a small percent (4.8%) of
tests being affected. To demonstrate this visually, we plot a CDF of
average throughput samples for original and bit-inverted replays in
Fig. 6(c). There is an inflection point at 2 Mbps, the detected throt-
tling rate, which we also detected in lab experiments using a prepaid
SIM. We suspect the reason for such a small fraction of tests being
affected is that throttling happens on uncommon data plans, such as
the prepaid one we used for lab experiments.

Different policies for different video-streaming apps As
discussed in §4.3, T-Mobile implements delayed throttling based on
bytes. Interestingly, we find that not all throttled video streaming
services are treated equally under this policy. We detected 7 MB of
delayed throttling for Netflix and NBC Sports, and 6 MB for Amazon
Prime. YouTube does not get any delayed throttling in our dataset—
they are throttled from the start.

Skype tests in Sprint ~ We did not detect throttling of Skype
video calls in our lab experiments on a Sprint SIM; however, our
methodology found evidence of Skype video throttling from Wehe
crowdsourced data. Fig. 6(d) shows a CDF of average throughputs for
original and bit-inverted Skype video tests, with detected fixed-rate
throttling at 1.5 Mbps. When focusing on Jan., 2018 data, we find
that the Jackknife KS test used to detect differentiation has a p-value
of 8 * 10°* with 100% accept ratio—strong evidence of throttling.
Interestingly, Wehe tests identified such differentiation until Sep.
2018, but the tests no longer indicated differentiation afterward.
One explanation for this behavior is that Sprint no longer throttles
based on content in our Skype video tests. When asked (in Oct.,
2018) to comment on our findings regarding Skype and other tests
indicating throttling, a press spokesperson from Sprint replied:
“Sprint does not single out Skype or any individual content provider

Tech Report, 2019

Li.et al.

1.0 1.0 1.0 1.04{ — Original replay
—— Bit-inverted replay

0.8 0.8 0.8 0.8 146 Mbps

0.6 0.6 0.6 0.6

0.4 0.4 —— Original replay 0.4 0.4

—— Bit-inverted replay —— Bit-inverted replay —— Bit-inverted replay
0.2 —— Original replay 0.2 1.9 Mbps 0.2 —— Original replay 0.2
1.4 Mbps 3.9 Mbps 2.0 Mbps
0.0 0O 2 4 6 8 10 12 14 0.0 0 2 4 6 8 10 12 14 0.0 0 2 4 6 8 10 12 14 0.0

Average throughput (Mbps) Average throughput (Mbps)

(a) YouTube tests on AT&T (all data) (b) YouTube tests on Verizon (all data)

1 2
Average throughput (Mbps) Average throughput (Mbps)

(c) YouTube tests on Sprint (January 2018) (d) Skype tests on Sprint (January 2018)

Figure 6: CDF of average throughputs from YouTube ((a)—(c)) and Skype (d) tests. For AT&T, the detected throttling rate is 1.5 Mbps
in 6(a), for Verizon there are two detected rates (2 Mbps and 4 Mbps) in 6(b). In Sprint, we detect throttling of a small portion
(4.8%) of the original replays throttled to 2 Mbps in 6(c). For Skype tests on Sprint in 6(d), the detected throttling rate is 1.5 Mbps.

in this way!" Our lab tests in 2019 corroborate the claim about Skype
(but does not speak to the early 2018 findings); however, our lab
tests also identify that Sprint does single out content providers via
content-based throttling.

7 IMPACT ON VIDEO STREAMING

While Wehe enables us to observe differentiation at scale, it does not
provide details about the video resolution for a given app (e.g., which
videoresolutions are selected by a video streaming app). As described
in Section 3, Wehe simply replays the payloads recorded from video
streaming, and does not adapt bitrates dynamically. To address this,
we need additional experiments to help us understand how streaming
apps (with adaptive bitrate) behave when being throttled.

This section describes how we conduct these additional mea-
surements by instrumenting video streaming apps to determine
how throttling impacts the video resolution selected by each player.
We focus on this metric because it is the one most often cited in
ISPs’ throttling disclosures (e.g., “video streams up to 480p”), but
to date has received little attention from auditing measurements.
We first describe the data collected in Section 7.1. We then discuss
the impact of throttling and app’s data usage setting on streaming
in Section 7.2. Finally, we identify root causes for observed behavior
using sequence-time diagrams in Section 7.3.

7.1

Experiment environment We analyze Netflix, YouTube and
Amazon on prepaid plans from AT&T8, T-Mobile, Verizon, and Sprint
between Jan. 14 and Jan. 25, 2019. We present the impact of throttling
on video quality and throughput over each cellular network, and
compare each result with tests (1) over WiFi, (2) when connected via
an encrypted VPN on the same cellular connection, and (3) when
disabling any data-saving by the apps (i.e., enabling streaming at the
maximum rate according to the app). The WiFi network we used is
not throttled and VPN tunnels evade any content-based throttling.
In each network setting, we perform a two-minute streaming session
for each app.® We repeat each ISP-app experiment five times and
present summary results.

Measuring video resolution

Video streaming Ineachvideo streaming session, we stream the
same video and let the client app determine what video resolution to
use. While the bitrate selection code is unavailable to us, we expect

8The AT&T SIM had Stream Saver [1], which throttles video traffic, enabled by default.
9We used iPhones (6S and 8) and a Nexus 6 and obtained similar results from all three.

that the video streaming session is influenced by factors such as
encoded bitrates, network conditions, access technology, and data
usage settings. We discuss the factors that we vary in our tests.

To vary whether a video streaming session is affected by content-
based throttling, we stream video with and without an encrypted
VPN tunnel. For access technology, we run tests over both cellular
and WiFi connections. For the WiFinetwork, we confirm that neither
the network nor the app (the app does not attempt to save data on
WiFi) are the bottleneck. Finally, for the data usage settings, we note
that Netflix and Amazon provide an option in their app to let users
control how much data they want to use over cellular connections.
Amazon has three settings: Good (0.6GB/hour), Better (1.8GB/hour)
and Best (5.8GB/hour). Netflix also provides three settings Auto-
matic, Save Data and Max data which allow 4 hours, 6 hours and
20 minutes per GB. For these apps we test both their default!? and
most data-intensive settings (which we refer to as “Max data”).

Video quality and throughput There are no publicly known
APIs to collect video quality information from mobile apps. Our
approach is to monitor video quality during playback using app
features that print video resolution on the screen, then use optical
character recognition (OCR) to extract them for YouTube and Netflix.
Amazon does not expose video resolution information, so we obtain
this data from the HTTP GET request and the manifest file. We
calculate the throughput based on packet capture data.

7.2 Impact of throttling

We begin by analyzing the impact of throttling on video streaming
resolution and throughput.

Throttling decreases playback resolution Figure 7 shows
the percentage of time the video is streamed at each resolution. The
precise resolutions and their mappings are listed in Appendix E. Each
subfigure plots the results for a different video streaming service, and
each plot groups our results according to whether the test exposes the
original packet payloads (“exposed”) or uses a VPN to conceal them.
As expected, in tests where packet payload is exposed for Netflix
and YouTube, the playback resolution is lower than the cases where
the VPN conceals the payload. This result holds even when we turn
off any data saving mechanisms (“Max data” and “VPN Max data”).
The exceptions are Amazon and Sprint on Netflix. We discuss the
Amazon case below, but do not have a root cause for Sprint/Netflix.

10«Automatic” for Netflix and “Good” data usage on Amazon.

Large-Scale Analysis of Deployed Differentiation

Tech Report, 2019

Il LD N SD low 3 sb 3 HD low [HD
Exposed VPN Exposed VPN
Default Max Data Default Max Data WiFi Default Max Data Default Max Data WiFi Exposed VPN WiFi
100 100 100
o
£
E 75 75 75
s H
& 50 50 i 50
£
g 2 25 25
&
0 S 0 S 0
RIS NI RIS NI T2 S SRR RN RN NN N AT
& & & X & & & & & & &F PRSERN & X & & & & N & N &
& S S S z,g&’vé S z,gv"vé EOCHS S S z,;\'v"é& POy z&»"é& S5 z&»"é& POIC AP & PR
SN SN SN SN N QX ENIRN X X & AN S X
(a) Amazon (b) Netflix (c) Youtube

Figure 7: Stacked histogram for each video streaming service, showing the percentage of time the video is streamed at each
resolution (LD, SD, and HD are low, standard, and high definition). The precise resolutions are in Table 9.

— AT
-- ATT VPN----

—— Verizon
Verizon VPN

— AT
== ATT VPN----

Sprint —— TMobile
Sprint VPN---- TMobile VPN----

Sprint

—— TMobile
Sprint VPN---- TMobile VPN----

— AT
-- ATT VPN----

—— Verizon
Verizon VPN

Sprint —— TMobile —— Verizon
Sprint VPN---- TMobile VPN---- Verizon VPN

1.0

1.0

Lo ==~ e
o

0.8 2 0.8 0.8
L 06 L 06 L 06
a a a
o4 o4 Co4

0.2 0.2 0.2

0.0 0.0 0.0

00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 17.5 20.0

Throughput (Mbits/sec)

(a) Amazon

Throughput (Mbits/sec)

(b) Netflix

Throughput (Mbits/sec)

(c) YouTube

Figure 8: CDF of throughput for each video streaming service (with low data usage settings) and each carrier.

Cellular networks can support higher throughputs Figure 8
presents the throughput observed while streaming under the default
app settings for exposed (solid) and tunneled traffic (dashed). We
confirmed there was sufficient cellular bandwidth (using Speedtest)
of at least 20 Mbps in all tests. This shows that cellular networks
support much higher throughput than the throttling rate (as indi-
cated by the larger average throughputs for VPN curves of Netflix
and YouTube). The exception is Amazon, discussed below.

Apps default to limiting their streaming rates =~ We find that
Amazon and Netflix, by default, use a lower video resolution than
the network can support, with or without the VPN (Fig. 7). When
compared with “Max data,” nearly all of the tests using the default
data usage setting select video resolutions that were below 480p (SD),
with Netflix picking a resolution as low as 384x216 (LD in the dia-
gram) and Amazon picking 710x296 (“SD low” in the diagram). These
are substantially lower than the phone screen resolution (1334x750).
When we disable the default behavior and allow the apps to stream
at their highest achievable rate, video streaming services are able
to achieve significantly higher resolutions—indicating that, except
for Netflix on Sprint, the cellular networks tested have sufficient
bandwidth to support HD video.

Amazon over VPN connections is a special case. Unlike others, the
throughput does not increase while using a VPN because Amazon’s
default data usage settings restricts the app to only use 0.6GB per
hour, or an average of 1.6 Mbps both with and without the VPN.
When we disable the default throughput limitations (not shown)
Amazon has throughputs of 2 Mbps when the packet payloads are
exposed and throughput of 4.5 Mbps over VPN. Note that the reason
Amazon does not appear to be limited by 1.5 Mbps throttling on
AT&T is because AT&T throttles each TCP connection to 1.5 Mbps
individually, and Amazon uses multiple TCP connections.

10 —
X X X X X X
8 X X X % X X
H X X X X X X
5 XX X X X
5‘ 6 Netflix First Arrival YouTube First Arrival
ey 2 x X Netflix Retrans X YouTube Retrans
g x x X
2 x X
X X X X X X X X
0
0 5 10 15 20 25

Time (s)
Figure 9: Bytes over time when streaming Netflix (red) and
YouTube (blue) on T-Mobile. Netflix experiences delayed
throttling, but not YouTube.

To summarize, throttling indeed limits maximum video streaming
resolution, but apps’ default settings and available resolutions also
play a significant role.

7.3 Transport-layer impact of throttling

We now investigate how throttling impacts video streaming at
the transport layer. We explore this impact in Figures 11 and 9 by
considering the bytes transferred over time for each video stream.
Each figure is annotated with the initial transmission of a packet
(circles) as well as retransmission events (X). We collect packet
captures for this analysis from a (non-rooted) iPhone via standard
developer tools for iOS [9], and we use the definition of “TCP
retransmission” in Wireshark [10].

Transparent proxies and the transport layer =~ We observe
AT&T and Verizon implementing TCP terminating proxies in their
networks with drastically different results for the transport layer.
Though separate analysis with Wehe, we identified that AT&T uses
a transparent TCP proxy to split the connection, buffer packets from
the server, and pace packets between the proxy and mobile device,

Tech Report, 2019

at arate of 1.5 Mbps. This buffering and pacing of packets results in
throttling that does not incur high rates of retransmissions.

In contrast to AT&T, the retransmission rate is 23% when streaming
Netflix on Verizon, the highest among the other carriers and high by
any standard (see Appendix F for details). We conducted additional
experiments to investigate the root cause of this behavior. Namely,
we used Wehe tests in lab experiments and observed the same high re-
transmission rates at the client; however, the server traces indicated
little-to-no retransmission. Thus, we believe that Verizon imple-
ments a transparent TCP proxy like AT&T; however, unlike AT&T,
Verizon’s proxy does not pace packets, instead sending them faster
than the throttling device allows (and thus leading to high packet
loss). Interestingly, there is minimal impact of the high retransmis-
sion rate on video streaming, likely because the video streaming
buffer absorbs any transient disruptions to packet transfers.

Policies can differ between applications Figure 9 shows the
bytes over time when streaming a video on Netflix and YouTube over
T-Mobile’s network. Note that when retransmission and first-arrival
markers overlap, there are time gaps on the order of 10s of millisec-
onds, but not visible on a graph (which is measured in 10s of seconds).
In each cluster of points, the retransmissions occur first (and cor-
respond to bytes sent one RTO earlier), then as the retransmitted
packets are received and ACKed, new first transmissions occur 10s
of milliseconds later.

We observe that T-Mobile throttles Netflix after 7 MB of data
transfer (delayed throttling), while it does not delay throttling for
YouTube. While packet loss is zero during the delayed throttling
period, immediately afterward the retransmission rate is 26%,
eventually reducing to 17%. By comparison, YouTube initially
experiences a loss rate of 6.8% and drops to 3% after 70 seconds. In
both cases, losses waste substantial bandwidth, but the problem is
more acute for cases with delayed throttling due to TCP sending
at a high rate and adapting slowly.

8 DISCUSSION

This section discusses additional considerations about our findings,
their generality, and future work.

BiastowardstheUS. Mostof our data comes from the US, which
necessarily biases our findings in a way that likely undercounts
differentiation outside the US. In addition, Wehe includes tests for
video and music streaming apps, as well as VoIP and videoconference
apps, that are popular in the US. However, it is likely that other apps
are more popular in other countries, and some of those apps may be
throttled. If this is the case, we would underreport the prevalence of
throttling in such regions. In the future, we will add tests for more
apps that are popular in other regions.

ISPs where throttling was not detected. =~ We gathered suf-
ficient samples to detect differentiation in 144 ISPs, and detected
differentiation in 30 of them. Our results suggest that the majority of
ISPs that we studied do not deploy content-based differentiation. Ex-
amples include major broadband providers in the US (e.g., Comcast),
and all broadband and cellular ISPs in France. Note, however, that
some ISPs may throttle traffic using methods other than content-
based differentiation (e.g., throttling based on IP or monthly data
usage) that Wehe cannot detect. As such, we can only say that we did

Li.et al.

not detect content-based differentiation, but we cannot tell whether
other differentiation occurs.

Ground truth. Itisdifficult,and in some cases impossible, to find
ground truth for every ISP in our study. However, we did validate,
via documentation on providers’ websites, that throttling policies
exist for most US carriers and for several outside the US. That said,
there are many ISPs that either do not disclose this information or
make it hard to find. There is a clear need for better transparency
and more uniform ways of disclosing throttling behavior.

Future of DPI-based differentiation. = We successfully identi-
fied the classification rules used by ISPs for throttling, and in general
these rules rely on plaintext payload contents (e.g., SNI field in TLS
handshake). In newer protocols such as TLS 1.3 with encrypted SNI
(or QUIC with similar features), such information will no longer be
in plaintext—begging the question of how DPI devices will identify
traffic for differentiation. We believe that content-based differen-
tiation might still exist even when using such protocols, e.g., by
correlating flow IPs with the plaintext names in DNS lookups that
they correspond to. Of course this can be addressed by technologies
like DNS over HT TPS. Assuming all content is encrypted (even DNS),
we envision that classifiers will search for traffic patterns instead of
text strings. Because Wehe preserves traffic patterns, we believe our
approach will still work.

Complex relationships between content providers, ISPs, and
throttling practices. = We showed that throttling practices are
deployed by many ISPs, and these practices generally worsen per-
formance for content providers in terms of metrics like packet loss
and decreased video quality. However, we cannot identify the extent
to which content providers are (dis)satisfied with such policies. For
example, content providers may experience reduced transit costs
for throttled video when compared to unthrottled video that uses
higher resolution and more bandwidth. It is also possible that ISPs
and content providers have entered into agreements to collabora-
tively control traffic volumes from streaming video. In short, the
relationship between content providers, ISPs, and deployed traffic
management practices may be more complicated than publicly dis-
closed. Of course, understanding such relationships is outside of the
scope of this work.

9 CONCLUSION

In this work, we conducted a large-scale, one-year study of
content-based traffic differentiation policies deployed in operational
networks. We developed and evaluated a methodology that
combines individually error-prone device measurements to form
high-confidence, statistically significant inferences of differentiation
practices, and identified differentiation in both cellular and WiFi
networks. We found that most throttling targets video streaming,
and that there are a wide range of throttling implementations
detected in our dataset. In addition, we investigated the impact
of throttling on video streaming resolution, finding that while
throttling does limit video resolution, it is also the case that default
settings in video streaming apps in some cases are the primary
reason for low resolution. We are making our code, dataset, and
summary of findings publicly available to inform stakeholders and
bring empirical data to discussions of net neutrality regulations.

Large-Scale Analysis of Deployed Differentiation

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Walter
Willinger, for their valuable feedback. This work was funded in part
by the National Science Foundation (CNS-1617728, CNS-1700657,
CNS-1350720, CNS-1740895, and CNS-1651784), a Google Research
Award, Verizon Labs, Arcep (Autorité de Régulation des Commu-
nications Electroniques et des Postes), and an AWS Research Grant.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation,
Google, Arcep, Verizon Labs or Amazon.

REFERENCES

i
[2

2017. AT&T Stream Saver. https://www.att.com/offers/streamsaver.html. (April 2017).

2018. All you need to know about Net Neutrality rules in the EU. https://berec.europa.eu/eng/

netneutrality/. (April 2018).

[3] 2018. AT&T Lowers Unlimited Data Price. https://arstechnica.com/information-technology/
2017/02/att-lowers-unlimited- data- price-to- 90-adds- 10gb- of- tethering/. (December 2018).

[4] 2018. Details omitted for double-blind review. (January 2018).

[5] 2018. FCC Releases Restoring Internet Freedom Order. https://www.fcc.gov/fec-releases-
restoring-internet-freedom-order. (Janurary 2018).

[6] 2018. Verizon Unlimited Plans. https://www.verizonwireless.com/plans/unlimited/. (December

2018).

2018. Wehe: Check Your ISP for Net neutrality Violations. https://dd.meddle.mobi/. (April 2018).

2019. AT&T Plans. https://www.att.com/plans/wireless.html. (January 2019).

[9] 2019. Recording a packet trace. https://developer.apple.com/documentation/network/

recording_a_packet_trace. (June 2019).

2019. Wireshark’s TCP Analysis. https://www.wireshark.org/docs/wsug_html_chunked/

ChAdvTCPAnalysis.html. (June 2019).

V. Bashko, N. Melnikov, A. Sehgal, and J. Schonwalder. 2013. BonaFide: A traffic shaping

detection tool for mobile networks. In In Proc. of Integrated Network Management (IM2013).

Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P. Gummadi, Ratul Mahajan,

and Stefan Saroiu. 2010. Glasnost: Enabling End Users to Detect Traffic Differentiation. In Proc.

of USENIX NSDI.

o)

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

Tech Report, 2019

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and Vern Paxson.
2015. Examining How the Great Firewall Discovers Hidden Circumvention Servers. In Proc. of
IMC. ACM.

FCC. 2015. Protecting and Promoting the Open Internet. https://www.federalregister.gov/
articles/2015/04/13/2015-07841/protecting-and- promoting- the-open- internet. (April 2015).
Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa, Yuchung Cheng, Tayeb Karim,
Ethan Katz-Bassett, and Ramesh Govindan. 2016. An Internet-wide analysis of traffic policing.
In Proc. of ACM SIGCOMM.

Frank J. Massey Jr. 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Amer. Statist.
Assoc. 46, 253 (1951).

Arash Molavi Kakhki, Fangfan Li, David R. Choffnes, Ethan Katz-Bassett, and Alan Mislove.
2016. BingeOn Under the Microscope: Understanding T-Mobile’s Zero-Rating Implementation.
In Proc. of SSGCOMM Workshop on Internet QoE.

Arash Molavi Kakhki, Abbas Razaghpanah, Anke Li, Hyungjoon Koo, Rajesh Golani, David R.
Choffnes, Phillipa Gill, and Alan Mislove. 2015. Identifying Traffic Differentiation in Mobile
Networks. In Proc. of IMC.

Partha Kanuparthy and Constantine Dovrolis. 2010.
discrimination. In Proc. of IEEE INFOCOM. IEEE.
P.Kanuparthy and C. Dovrolis. 2011. ShaperProbe: End-to-end Detection of ISP Traffic Shaping
using Active Methods. In Proc. of IMC.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. 2012. Optimal detection of changepoints
with a linear computational cost. 7. Amer. Statist. Assoc. 500 (2012).

Fangfan Li, Arash Molavi Kakhki, David Choffnes, Phillipa Gill, and Alan Mislove. 2016.
Classifiers Unclassified: An Efficient Approach to Revealing IP-Traffic Classification Rules. In
Proc. of IMC.

Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mislove. 2019. A
Large-Scale Analysis of Deployed Traffic Differentiation Practices. In Proc. of ACM SIGCOMM.
Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki, David Choffnes,
Phillipa Gill, and Alan Mislove. 2017. liberate, (n): A Library for Exposing (Traffic-classification)
Rules and Avoiding Them Efficiently. In Proc. of IMC (IMC °17).

Riccardo Ravaioli, Chadi Barakat, and Guillaume Urvoy-Keller. 2012. Chkdiff: checking traffic
differentiation at internet access. In Proc. of CONEXT 2012 Student Workshop. ACM.

Riccardo Ravaioli, Guillaume Urvoy-Keller, and Chadi Barakat. 2015. Towards a general solu-
tion for detecting traffic differentiation at the internet access. In Proc. of the 23rd International
Teletraffic Congress (ITC). IEEE.

Mukarram Bin Tariq, Murtaza Motiwala, Nick Feamster, and Mostafa Ammar. 2009. Detecting
Network Neutrality Violations with Causal Inference. In Proc. of ACM CoNEXT.

Huandong Wang, Fengli Xu, Yong Li, Pengyu Zhang, and Depeng Jin. 2015. Understanding
mobile traffic patterns of large scale cellular towers in urban environment. In Proc. of IMC.

Udi Weinsberg, Augustin Soule, and Laurent Massoulie. 2011. Inferring traffic shaping and
policy parameters using end host measurements. In Proc. INFOCOM. IEEE.

Ying Zhang, Z. Morley Mao, and Ming Zhang. 2009. Detecting Traffic Differentiation in
Backbone ISPs with NetPolice. In Proc. of IMC.

Diffprobe: detecting ISP service

https://www.att.com/offers/streamsaver.html
https://berec.europa.eu/eng/netneutrality/
https://berec.europa.eu/eng/netneutrality/
https://arstechnica.com/information-technology/2017/02/att-lowers-unlimited-data-price-to-90-adds-10gb-of-tethering/
https://arstechnica.com/information-technology/2017/02/att-lowers-unlimited-data-price-to-90-adds-10gb-of-tethering/
https://www.fcc.gov/fcc-releases-restoring-internet-freedom-order
https://www.fcc.gov/fcc-releases-restoring-internet-freedom-order
https://www.verizonwireless.com/plans/unlimited/
https://dd.meddle.mobi/
https://www.att.com/plans/wireless.html
https://developer.apple.com/documentation/network/recording_a_packet_trace
https://developer.apple.com/documentation/network/recording_a_packet_trace
https://www.wireshark.org/docs/wsug_html_chunked/ChAdvTCPAnalysis.html
https://www.wireshark.org/docs/wsug_html_chunked/ChAdvTCPAnalysis.html
https://www.federalregister.gov/articles/2015/04/13/2015-07841/protecting-and-promoting-the-open-internet
https://www.federalregister.gov/articles/2015/04/13/2015-07841/protecting-and-promoting-the-open-internet

Tech Report, 2019

0.775
0.750
0.725
0.700
0.675
0.650
0.625
0.600

Ratio of positive tests

QO o0 a0 o0 a0 a0 a0 a0 0
Q()‘D 00)‘.0 QG'Q Q@‘D '\'ﬁ'g '\CJA'Q '\%A-Q 1\3'0 00"0

Time (Local to the Client)

Figure 10: Fraction of throttled tests per hour for Verizon
with detected time-of-day effect : less throttling on tradi-
tional busy hours and more throttling during quite hours

AT&T T-Mobile Verizon Sprint
iOS | An. | iOS | An. | iOS | An. | iOS | An.
O | 76% | 72% | T1% | 66% | 64% | 62% | 6% | 4%
N | 70% | 72% | 62% | 58% | 53% | 51% | 5% | 5%
a = - | 49% | 52% | 49% | 47% | 2% | 5%
% | 73% | 68% | 59% | 69% - - - -
(S) - - - - - - | 8% | 14%
6% | 3% - -

Table 6: Percentage of throttled tests across different mobile
OSes. We do not observe significant differences based on OS.

[NBC Sports [Amazon Prime Video
AT&T “GET”, “video” “GET ”, “video”
. “GET”, “video”, “GET”, “video”,
T-Mobile “nbesports”, “akamaihd.net” “aiv-cdn.net”
Verizon N/A “GET”, “aiv-cdn.net”
Sprint N/A “GET”, “video”, “aiv-cdn.net”

Table 5: Inferred DPI-classification keywords. N/A means
we did not detect throttling, note that the “video” keyword
appears in the HTTP response while the other keywords are
in the HTTP request.

APPENDIX

Appendices are supporting material that has not been peer reviewed.

A LABFINDINGS WHILE VALIDATING
OUR DIFFERENTIATION DETECTION

Here we expand upon findings specific to our lab tests performed in
§5 to evaluate our differentiation detection scheme, presented in §4.

We observed 15 ISP-app pairs (all video streaming apps) affected
by differentiation during our lab tests in 2018 and early Jan, 2019
(for these cases, Wehe detected throttling in all of the tests). The
findings are consistent with (somewhat vague) ISP disclosures, such
as “SD video streams up to 480p” for“all detectable video streaming”

In mid-January, we updated all recordings in Wehe, triggered by
Amazon Prime Video’s change from HTTPS to HTTP. We repeated
our experiments and found identical results except for the case of

Li.et al.

Amazon and Vimeo. We found that Verizon and T-Mobile throttled
both Amazon HTTP and HTTPS, but AT&T only throttled Amazon
HTTP. The older recording of Vimeo traffic was throttled only by
T-Mobile throughout our testing in January 2019, but the updated
recording of Vimeo was not throttled by T-Mobile (or any other
carrier). We believe this is because the DPI device in T-Mobile had
not updated its rules to reflect Vimeo’s change.

For every case of detected differentiation, we successfully
identified the corresponding classification rules. For HTTPS traffic
(i.e., YouTube, Netflix and Amazon) the classification rules are the
same as reported by Li et al. [22, 24], i.e., the matching text is found
in the SNI field of the TLS handshake, and consists of “googlev-
ideo.com” for classifying YouTube, “nflxvideo.com” for Netflix,
and “.aiv-cdn.net” for Amazon Prime. The matching content for
Vimeo is “vimeo.akamaized.net”, while the new Vimeo trace has SNI
“vimeocdn.com” and not classified. For HT TP traffic (NBC Sports
and Amazon Prime video), the classification rules partially check for
avalid HTTP request (e.g., “GET” request with valid HT TP headers)
and look for keywords in the payload. Example keywords include
“akamaihd.net”, “video” in “Content-Type” field. Table 5 presents
detected DPI rules for HTTP traffic not reported in prior work.

B IMPACT OF TIME
OF DAY AND MOBILE OS ON THROTTLING

We investigated time-of-day effects for throttling, and found few
significant differences due to busy hours. An example that did show
differences is YouTube over Verizon in Fig. 10. In this case, the
difference in throttling was counter to our hypothesis that throttling

would increase during busy hours and reduce in frequency when the
network is not busy, lending evidence to the hypothesis that throt-

tling practices are deployed independent of loads on the network.

C DETAILS OF DETECTED THROTTLING

Table 7 complements the analysis in Table 4, providing additional
details regarding the number of detected throttling cases per ISP-app
pair, and the percent of total tests they represent for the ISP-app pair.

We also found no significant differences in throttling based on
OS (Table 6).

D ADDITIONAL THROTTLING ANALYSIS

We present some additional findings from applying our methodology
on crowdsourced Wehe data on the top four US carriers (presented
in §6.3).

Bit-inverted replays being throttled. Our methodology fo-
cuses on detecting content-based throttling, but while reviewing
AT&T data we identified a significant number of average through-
put samples clustered around 3 Mbps for bit-inverted replays (e.g.,
Fig 6(a)). We believe this to be the result of a (now discontinued)
“Unlimited Choice” AT&T plan [3] that limited video streaming to
1.5 Mbps and “Network Speed” (everything other than video stream-
ing) to 3 Mbps.

Skype throttling detection over time = We grouped Wehe tests
to determine when Sprint likely stopped throttling Skype video tests.
Table 8 indicates that this most likely occurred some time in October.

Large-Scale Analysis of Deployed Differentiation

Tech Report, 2019

Rate a 3 N [>]
Country | ISP (Mbps) Tests Perc. | Tests Perc. | Tests Perc. | Tests Perc. | Tests Perc. Tests Perc.
WiFi network
Canada Start 6 21 30% 11 20%
UAE Etisalat 0 23 100%
us Hughes 1 27 71% 15 35%
Us NextLink 4 5 36% 7 54% 14 88% 4 33% 16 94%
Us ViaNetTV 1 11 52% 14 58%
Us ViaSat 1 11 37% 20 24%
Cellular network
Canada Rogers 1.5 15 10% 34 12%
15 14 23%
Canada SaskTel 3 15 25%
Chile Entel 1.5 16 53%
Germany | Telekom 1.5 16 15%
Israel HOTmobile 1.5 16 70%
UAE du 0 41 93%
UAE Etisalat 0 65 89%
Us AT&T 1.5 6,581 71% 9,847 70% 16,774 74%
0.5 74 47%
L LSRR 2 73 40% 78 50% 131 44%
Us Cellcom 4 17 53% 16 67% 20 49%
Us Cricket 15 173 57% 660 72%
Us CSpire 1 8 62% 26 93%
us FamilyMob. L3 24 89% 13 81% 19 83% 30 75%
- 1 9 41% 3 9% 3 14% 9 18%
Us eI 2 9 33% 5 23% 25 78% 8 36% 19 38%
P 15 6 33% 8 29%
us AU 3 7 447 12 8% 9 50% 12 43%
Us MetroPCS 15 400 80% 317 86% 400 87% 636 79%
. 15 905 12%
LE e 2 271 3% 432 5% 535 5%
us Tracfone 2 49 35% 120 44%
Us T-Mobile L5 3,744 51% 3,381 64% 4,684 61% 162 5% 7,556 67%
Us Verizon 2 1,295 7% 1,758 9% 2,274 8%
4 7,724 41% 8,831 43% 16,450 55%
Us Visible 2 18 78% 9 31%
Us XfinityMob. 2 24 62% 44 90% 34 79%
UK giffgaff 1 21 100% 34 927
UK 02 1.5 49 64% 86 64%

Table 7: ISPs showing differentiation

on particular apps, with the detected throttling rate in the second column. The data in

each cell is the number of tests that detected differentiation along with the percentage of tests those represent of all tests for
that app/ISP. Certain ISPs were observed with different throttling rates by different users, even for the same app.

Month(s) Detected throttling rate | # Tests
Jan 2018 1.46 Mbps 1664
Feb 2018 1.42 Mbps 328
Mar - Aug 2018 1.42 Mbps 341
Sep 2018 1.35 Mbps 322
Oct 2018 - Jan 2019 Not detected 4527

Table 8: Detected throttling rate and number of tests for
Skype video on Sprint over time. Our method detects
throttling of Skype tests until October 2018.

E VIDEO RESOLUTION MAPPINGS

Table 9 shows the resolution mapping and the total pixel count of
the various resolutions that were streamed on Amazon Prime Video,
Netflix and YouTube during our video resolution experiments.

F IMPACT OF TRANSPARENT
PROXIES ON RETRANSMISSIONS

Figure 11 (top) depicts the bytes over time when streaming a video on
Netflix over AT&T’s network; note that there are no retransmissions

during our two-minute packet capture, and the results are similar
for other tested apps. In contrast, Figure 11 (bottom) shows the
same for Verizon, which experiences a 23% retransmission rate, with
retransmissions occurring throughout the transfer.

Labels Resolutions | Total pixel count
384x216 82,944
426x240 102,240
LD 512x213 109,056
480x270 129,600
652x272 177,344
608x342 207,936
SD low 710x296 210,160
640x360 230,400
640x480 307,200
sD 768x432 331,776
720x480 345,600
854x480 409,920
960x540 518,400
HD low 1152x480 552,960
1280x533 682,240
HD 1280x720 921,600

Table 9: Resolution mapping used in Figure 7.

Tech Report, 2019 Li.et al.

le7
2
n
2
a1
First Arrival
X Retrans
001 , 40 60 80 160 120
e
2
S aad
2o R
g e XXX
@1 MM
L o
M First Arrival
0 MMM X Retrans
0 20 40 60 80 100 120

Time (s)

Figure 11: Bytes over time when streaming Netflix in AT&T’s
network (top) and Verizon (bottom). These networks have
transparent proxies with different implementations that
lead to high TCP retransmissions in Verizon but not AT&T.

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection
	3.1 Methodology
	3.2 Implementation
	3.3 Confounding factors and limitations
	3.4 Ethics
	3.5 Dataset

	4 Detecting Differentiation
	4.1 Identifying differentiation
	4.2 Inferring throttling rates
	4.3 Accounting for delayed throttling
	4.4 Limitations and Caveats

	5 Evaluation of Detection Method
	5.1 Lab experiment setup
	5.2 Comparison with Wehe data

	6 Characterizing differentiation
	6.1 Identified differentiation
	6.2 Variations in detected throttling
	6.3 Case studies

	7 Impact on Video Streaming
	7.1 Measuring video resolution
	7.2 Impact of throttling
	7.3 Transport-layer impact of throttling

	8 Discussion
	9 Conclusion
	References
	A Lab findings while validating our differentiation detection
	B Impact of Time of Day and Mobile OS on Throttling
	C Details of detected throttling
	D Additional throttling analysis
	E Video resolution mappings
	F Impact of transparent proxies on retransmissions

