Classifiers Unclassified: An Efficient Approach
to Revealing IP Traffic Classification Rules

Arash Molavi Kakhki*
*Northeastern University

Fangfan Li*

ABSTRACT

A variety of network management practices, from band-
width management to zero-rating, use policies that ap-
ply selectively to different categories of Internet traf-
fic (e.g., video, P2P, VoIP). These policies are imple-
mented by middleboxes that must, in real time, assign
traffic to a category using a classifier. Despite their im-
portant implications for network management, billing,
and net neutrality, little is known about classifier imple-
mentations because middlebox vendors use proprietary,
closed-source hardware and software.

In this paper, we develop a general, efficient method-
ology for revealing classifiers’ matching rules without
needing to explore all permutations of flow sizes and
contents in our testbed environment. We then use it
to explore implementations of two other carrier-grade
middleboxes (one of which is currently deployed in T-
Mobile). Using packet traces from more than 1,000,000
requests from 300 users, we find that all the devices we
test use simple keyword-based matching rules on the
first two packets of HTTP/S traffic and small fractions
of payload contents instead of stateful matching rules
during an entire flow. Our analysis shows that different
vendors use different matching rules, but all generally
focus on a small number of HTTP, TLS, or content
headers. Last, we explore the potential for misclassifi-
cation based on observed matching rules and discuss im-
plications for subversion and net neutrality violations.

1. INTRODUCTION

Today’s IP networks commonly use middleboxes to
perform management tasks that include bandwidth
management [6], protecting users from malicious traf-
fic [11], performance optimization [18}20], and zero-
rating [3]. While previous work has revealed the ex-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

IMC 2016, November 14 - 16, 2016, Santa Monica, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4526-2/16/11. .. $15.00

DOL: http://dx.doi.org/10.1145/2987443.2987464

David Choffnes*
T Stony Brook University

Phillipa Gill' ~ Alan Mislove*

istence of middleboxes and their policies using black-
box methods [2}/5,|7,[10,]12H14L[16,/17,[19,[21}22], there is
little work that investigates how these middleboxes de-
termine which traffic is subject to a policy. In this work,
we present the first general approach for doing so, and
use this to characterize three carrier-grade middleboxes.

To facilitate network management, numerous ven-
dors provide middleboxes that allow operators to spec-
ify high-level policies for traffic management (e.g., block
malicious traffic, prioritize VoIP) without needing to
know the details of how to implement them. In gen-
eral, these policies include a match rule (or classifica-
tion rule) that identifies a class of traffic, and an action
that specifies what should be done to this class of traf-
fic. An important challenge for any middlebox is how
to develop matching rules that reliably identify a traffic
class—often in real time so that it can apply a policy
to it. While certain types of classification are straight-
forward (e.g., identifying DNS traffic), accurately clas-
sifying traffic into classes such as video, voice, and Web
is challenging due to confounding factors such as SSL
encryption, ubiquitous HTTP transport, and the ab-
sence of standard content encodings. Because these de-
vices are expensive, sold under restrictive license agree-
ments, and deployed in ways that are not transparent
to users or researchers, little is known about how mid-
dlebox classifiers work and their implications.

In this paper, we are the first to identify and char-
acterize the classification rules for HT'TP(S) traffic im-
plemented in today’s carrier-grade middleboxes. This
allows us to understand how rules are deployed, their
impact on topics such as network neutrality, and how
they can be subverted. Further, our general algorithm
for identifying classification rules can facilitate auditing
and analysis of future middleboxes and their policies by
users, policymakers, and regulators. Our key contribu-
tions follow.

First, we develop a general methodology for identify-
ing the matching rules used by a classifier. To address
the potential combinatorial explosion of tests required
to uncover them, we propose the notion of Franken-
Flows, i.e., flows combining features of multiple, dif-
ferent packet traces generated by applications that are

http://dx.doi.org/10.1145/2987443.2987464

subject to classification. Doing so allows us to focus
only on traffic that is likely to trigger matching rules.

Second, we conduct a detailed study of the classifica-
tion rules used by devices in a controlled setting and in
the wild. These include a carrier-grade packet shaper
and an IPS device in our lab, as well as a third sys-
tem that enforces T-Mobile’s BingeOn service. Through
traffic-replay and analysis, we find that the devices all
analyze a small number of TCP, HTTP, and TLS fields
(e.g., Host and SNI) to classify network traffic in our
test suite, and do not use a fixed set of ports and IP
addresses.

Third, we find that the devices use simple text-based
matching in HTTP and TLS fields, indicating that
their accuracy is limited by the specificity of the string-
matching patterns that they use to match in HTTP
headers or TLS handshakes. We show that these strings
can lead to misclassification, both in terms of false pos-
itives and false negatives.

Fourth, we find that the devices exhibit a “match-
and-forget” policy where an entire flow is classified by
the first rule that matches, even if later packets match a
different rule that would lead to more accurate classifi-
cation. Further, when keywords for multiple classes ap-
pear in the same field in the same packet (e.g., the Host
header contains facebook.youtube.com), the devices
assign it to a single class using deterministic matching-
rule priorities. These simple matching priorities are eas-
ily exploited to allow one class of traffic to masquerade
as another and thus evade or subvert network policies.

2. METHODOLOGY

Our approach for identifying middlebox classification
rules is to use a device under our control as ground truth
for developing and validating our detection methodol-
ogy, then to use our methodology to study other middle-
boxes. Similar to our previous work [9], we use an air-
gapped testbed consisting of a client, server, and a mid-
dlebox between them (Fig. . In contrast to our prior
work, which focused on identifying when differentiation
occurs (e.g., shaping), this study focuses on identifying
precisely what content in network traffic triggers clas-
sification that may lead to differentiation. The server
also spoofs as an Internet gateway, allowing us to use
arbitrary IP addresses in our traffic and capture all com-
munication from all devices in the testbed.

The middleboxes in our possession allow us to log
in, but do not reveal the exact classification rules that
they use. However, we can access a user interface that
indicates in real time the class of traffic for each flow
that traverses it. This allows us to test hypotheses for
classification rules, by sending carefully crafted traffic
through the device to see how it is classified.

A naive approach to hypothesis testing is to try ev-
ery combination of packet sizes and packet payloads to
determine which ones trigger classification. However,

Classification
results

Traffic classifier

Replay client Replay server

Figure 1: Testbed for controlled experiments with classi-
fiers.

this is infeasible due to combinatorial explosion in the
number of tests required to complete the analysis.

Instead, we leverage the fact that 1) a set of tar-
geted applications potentially detected by the device
is known a prioriE and 2) application-generated traf-
fic already contains content that triggers rules. Using
the first observation, we focus only on traffic from ap-
plications that are likely to be classified. The second
observation allows us to use application-generated traf-
fic as baseline that we then modify to efficiently search
for the exact properties that trigger classification. Note
that this approach extends to devices in our testbed and
those in the wild, so long as we have both the network
traffic trace to test, and a way to tell that traffic has
been classified (e.g., rate limiting or zero-rating).

2.1 Dataset

Our approach requires us to send application-
generated traffic through our testbed. While this may
sound trivial, most interesting applications are closed-
source and often require interaction with third-party
servers to run; as a result, they cannot run in our air-
gapped testbed. Instead, we use the record/replay sys-
tem developed by Molavi et al. [9], which allows us to
replay arbitrary network traces gathered from applica-
tions outside our testbed.

To obtain a set of applications representative of those
users interact with, we leverage data from the ReCon
project |15, which boasts more than 300 users of iOS
and Android devicesEI This provides us with 1,179,618
HTTP GET requests, in which there are 20,129 unique
host headers, 8,701 unique User-Agent strings, and 685
distinct Content-Type headers [1]. We also extracted
1,727 unique Server Name Indication (SNI) fields from
51,985 HTTPS TLS handshakes.

Note that we only collect TCP traffic in our dataset,
as the vast majority of flows and applications in our
dataset use HT'TP/S. Understanding UDP-based clas-
sification is part of ongoing work.

2.2 Identifying Matching Fields

The first step in understanding matching rules is de-
termining which portions of network flows contain con-
tent that matches. Instead of permuting each bit in a

n our testbed, we have ground truth information about all appli-
cations the device claims to identify. Outside of our testbed, the
applications may be ones that an ISP publicly admits to target-
ing (e.g., T-Mobile’s Binge On) or those that an observer simply
suspects are targeted.

2This data is collected as part of ReCon’s IRB-approved study.

network flow to observe its effect on classification, we
take a more efficient approach that exploits the fact that
our recorded traffic already matches rules.

In the base case (nothing is known about matching
rules), we conduct a binary search where we replace half
of the flow with random bytes and observe its effect on
classification. Our assumption is that random bytes
are very unlikely to match any classification rulesﬁ If
the traffic is no longer classified as the recorded appli-
cation, we then identify a more specific region in which
the method will be applied on—namely, the half of bytes
that triggered the change. To do this, we first revert the
bytes in that region back to their original content, then
repeat the process of changing one half of the bytes at
a time in that region. If both halves triggered a change,
then we identify both halves as triggering the matching
rules. Once we identify portions of network flows that
trigger matching rules, we conduct more extensive tests
by modifying each byte of a packet, one at a time, until
we find the set of bytes that affect classification. These
bytes comprise the field(s) used for matching. We
intentionally avoid exhaustively evaluating all combi-
nations of bits, as this is combinatorially infeasible to
test at scale and is not the goal of our study.

Using this approach, we found that our packet-
shaping device uses HT'TP and TLS-handshake fields
in their matching rules, and only for the first packet in
each directionEI With this observation, we can more ef-
ficiently identify matching fields by using the known
structure of HTTP and TLS packets and permuting
only the corresponding fields. For example, when run-
ning this test on Netflix traffic, we find that the Host
header triggers classification. For Pandora, we find that
the User-Agent field is used. In addition, we omit any
portion of network traffic that does not trigger classifi-
cation, leading to substantially shorter replays.

2.3 Revealing Classification Rules

After identifying regions of network traffic that trig-
ger matching rules, our next step is identifying the spe-
cific matching rule. For this work, we assume that
matching rules take the form of regular expressions.
While matching rules in general could be arbitrary and
not based on text, our extensive analysis of three devices
found no counterexamples to our assumption. Without
loss of generality, we make an additional simplifying as-
sumption that matching rules take the form of one or
more basic regular expressions. While we could adapt
our methodology to reveal more complex and diverse
matching rules, we found no need to based on the three
devices we tested with HTTP/S traffic.

3We validated this assumption by running 1,000 flows, each with
different random bytes (from 100 to 1000 bytes) on port 80, all
of which were classified as the same generic “HTTP” class.

4To validate this, we tried splitting the first packet into two pack-
ets, each with different subsets of bytes, and found that only the
first packet was ever used for classification.

Algorithm 1 Isolating fields used in matching rules.

Inputs:

T: the original trace

R: classification

L: list of potential matching fields
Output:

M: set of combinations of matching fields

function LOCATEMATCHINGFIELDS(T, R, L)
Initialize number of fields k to 1
M = Set()
while k£ < Length(L) do

for F in combination(k,L) do
T’ = copy(T)
for field in F do
T’ = permute(field)
R’ = classification(T")
if " # R then
M .add(F)
k+=1
Return M

We assume that a matching rule applies to a field,
i.e., a region of a packet identified in the previous step.
However, this alone does not tell us the matching rule
because it is not specific. For example, if the field con-
tains Host: prefix.netflix.com, it does not neces-
sarily imply that the matching rule is “First find the
Host field, then find any string that contains netfliz”
(e.g., the rule could also be “find any Host field that
ends with netfliz.com”).

To reveal the precise matching rule, we conduct tests
that randomize and otherwise alter subsets of content in
each field. More generally, our approach is to permute
content in matching fields to test hypotheses about the
minimal set of content in matching fields that reliably
triggers classification for a specific application (see Al-
gorithm . This entails replacing content with random
bytes, as well as adding and removing content. Be-
cause these generated flows include traffic from multiple
sources of content, we refer to them as FrankenFlows.

2.3.1 Building a FrankenFlow

To build a FrankenFlow, we start with a base flow
that is associated only with the application-layer pro-
tocol, i.e., HTTP or HTTPS. To do so, we build a flow
that contains a dummy value for every known match-
ing field for a classifier (revealed by the analysis in ,
where each field’s value contains random content. For
example, a base flow for HTTP traffic is a valid GET
request and response pair where all the HTTP header
values are replaced with random content:

GET {random text} HTTP/1.1
Host: {random text}
User-Agent: {random text}

Likewise, a base flow for HTTPS content is a TLS
handshake with any SNI and server-certificate fields re-
placed with random content. We then automatically
generate new FrankenFlows by replacing dummy values
with payloads from matching fields in observed network
traces.

2.3.2 Extracting Matching Rules

After isolating fields used for classification, we further
randomize substrings of matching fields to isolate the
portions of field triggering matching rules. Based on
the resulting tests, we construct a minimal multi-level
matching rule (i.e., a rule that contains the minimum
number of fields to trigger a match) that is consistent
with our observations.

For example, consider qq.com downloads. First, we
observe that it is an HTTP GET request, a feature shared
by many applications. Second, we find that the Host
field is used for matching. Next, we modify the Host
field by adding, removing, and replacing field values
with random strings. During this process, we find that if
dl.xyz.qq.com is replaced with random.qq.random, it
is classified as QQ, and if replaced with d1.xyz.random,
then it is classified as generic “HTTP”. Last, if we re-
place the string with random.dl.random.qq.random or
random.qq.random.dl.random, it is classified as QQ
Download (a different class from “QQ”). We therefore
infer that classifier rule is: 1) HTTP GET request, 2) Host
header contains *d1*.qq.* or *.qq.*d1l*.

To determine the impact of keyword location on clas-
sification, for each line in the HTTP header we ran-
domly added, moved, removed, and replaced bytes both
inside and outside of the identified keyword region.
These tests reveal rules that match on simple keywords
anywhere in a field, only at the beginning of a field, or
only at the end of a field.

2.3.3 Rule Prioritization

Our methodology also reveals how matching rules
are prioritized when a flow matches multiple rules si-
multaneously. To determine the priority of matching
rules for different matching fields, we simply build all
combinations of FrankenFlows with different matching
field content, and determine the relative priority of each
rule by inspecting the classification result. For exam-
ple, if a FrankenFlow contains Host: netflix.com and
User-Agent: Pandora... and is classified as Netflix
regardless of the order the fields appear in the flow, then
we conclude that Netflix’s rule has a higher matching
priority than Pandora’s. Otherwise we infer that order
determines matching priority.

For the case of multiple matches in the same field
(e.g., Host: netflix.youtube.com), we explore all
combinations of matching strings, by concatenating
each matching string into one field value in a Franken-
Flow. When the classifier selects one application that
matches, we then determine whether the position of the
corresponding matching string matters (e.g., was the

application selected because the matching field was the
first to appear in the FrankenFlow?).

Specifically, we move the matching string to the end
of the concatenated string. If the classification result
changes, then order also impacted rule matching (e.g.,
there is a tie-breaker based on position); otherwise, we
know that order is not a factor. Once we determine the
impact of position on classification for an application,
we remove its string from the FrankenFlow and repeat
these steps for the application that is classified next.

2.4 Efficiency

An important property for our methodology is effi-
ciency, both in terms of time and data usage required
to learn matching rules. We now evaluate this, and dis-
cuss an optimization that improves efficiency.

In addition to FrankenFlow optimizations, we lever-
age the observation that classification occurs using only
the first two packets exchanged between client and
server for HT'TP /S traffic for the three devices we study.
As a result, we need only conduct tests using only the
first packet sent by a client and server. Note that if our
assumption is incorrect (which is not the case for any
devices we tested), we simply continue to replay larger
fractions of flows until we are able to identify classifica-
tion rules.

This approach significantly reduces the data and time
needed for each test. For example, the size of a typical
streaming video traffic replay is reduced from 30MB
to just 2 KB in our testbed (where we have immediate,
ground-truth classification results). In our testbed, we
tested all combinations of FrankenFlows using a single
client and server in 14 hours.

In contrast, the naive approach of permuting every
bit of two 1460 B packets (one for client request and
one for server response) would require 2" tests, where
n is the number of bits (23,200). Suffice it to say this
number is enormous. Even if we were to permute only
80 bits of a field value, it would require 1.2x10%* tests,
requiring ~ 106 years if each test takes one second.

Outside our testbed, we detect T-Mobile’s Binge On
by checking for zero-rated traffic against our data plan,
as done previously [8]. Here, we use 10 KB Franken-
Flows, to avoid attributing data charges to background
traffic. Identifying the matching rules for an application
in Binge On required on average 400 KB of data.

3. EXPERIMENTAL RESULTS

We now present results from our detailed look into
the traffic-shaping device in our testbed, as it contained
a large number of matching rules and provided us with
ground-truth classification resultsﬂ In the next section,
we summarize results from two other devices.

Table [1] lists the application categories our device de-
tected and the number of matching rules we triggered in

5This device vendor is consistently identified as one of the key
compaunies in the global DPI market [4].

Application category | Number of examples
Streaming Applications 33
Web Applications 32
File Transfer 10
VoIP 9
Instant Messaging 7
Games 5
Mail 5
Security 2
P2P 1

Table 1: Categories of applications detected by our de-
vice using test traffic gathered from user traces. Our traces
provide good coverage across a variety of application types.

Header | Example Value | Application
URI site.js?’h={...}-nbecsports-com NBC Sports
Host Host: www.netflix.com Netflix

User-Agent User-Agent: Pandora 5.0.1 {...} Pandora
Content-Type | Content-Type: video/quicktime QuickTime

Table 2: HTTP matching fields and examples of applica-
tions classified by them. Matching keywords are in bold
font.

each category. The device identified 104 different classes
of traffic, covering 9 of the 13 categories it supportsﬁ

3.1 Matching Fields

In this section, we identify the fields used for match-
ing rules in the packet shaper. Recall that our Franken-
Flows are generated using HTTP/S traffic, so our re-
sults only apply to these protocols.

HTTP. We find that this device first identifies
HTTP traffic by looking for a request that starts with
GET, then checks for application-specific content in the
following headers: URI, Host, User-Agent (in the GET
request) and Content-Type (in the GET response). Ta-
ble[2shows examples of matching fields. We note that in
many cases, it is trivial to modify these fields to avoid
classification, indicating that matching fields are not
particularly resilient to adversarial behavior. Further,
we will show in the next subsection that many of these
rules can lead to false positives.

HTTPS. When applications use HTTPS, the en-
crypted TLS connection prevents the device from in-
specting HT'TP headers. In this case, the device iden-
tifies the corresponding application by matching text
anywhere in the first two packets of the TLS hand-
shake. These include strings in the TLS Server Name
Indication (SNI) extension, and in the server-supplied
SSL certificate, which contains fields such as the Common
Name and Subject Alternate Names (SAN) list.
Interestingly, the classifier does not parse fields in the
TLS handshake: our FrankenFlows were classified as an
application even if the TLS handshake contained invalid
data, so long as a keyword in a matching rule appeared
in the packet payload. Similar to the case of HT'TP, this

6The remaining 4 categories are for intranet traffic.

would allow misclassification, e.g., by putting a keyword
in the SAN list that matches a different application.

3.2 Matching Rules

Our analysis revealed that the HT'TP matching rules
used by the shaper can be described by a series of key-
word matches on text in matching ﬁeldsm Examples
of different matching rules include: facebook (Face-
book), .spotify. (Spotify), music.qq (QQ Music),
instagram.com (Instagram), storage.live.com (Sky-
Drive), and itunes.apple (iTunes). For HTTPS traf-
fic, the matching rules are simply text strings. Exam-
ples include netflix, facebook and cloudfront.

None of the Host-header-based matching rules spec-
ify where in the matching field they occur. For exam-
ple, netflix.youtube.com and youtube.netflix.com
would both be classified as Netflix. In the case of
matches of the User-Agent string, we find that 28 cases
match only at the beginning of the string (e.g., Viber,
Pandora, Pinterest, WhatsApp) and 4 cases can match
anywhere in the string (e.g., YouTube, Twitter). We
could find no general pattern for when location of key-
words played a role in matching rules.

Interestingly, these matching rules are surprisingly
brittle. For example, we already identified how Net-
flix and YouTube can be misidentified. Further, we did
not find any restriction on whether a string appears
at the end of a line, something that would avoid this
case. As another example, we found that traffic from
the “Galaxy Wars Multiplayer” app is mistakenly clas-
sified as BBC’s iPlayer because the keyword iplayer
appears in the HTTP header.

3.3 Priority Rules

We characterized how the device classifies a flow when
multiple rules match a single flow. Such “tie-breaker”
cases (which we found to be consistent over time) pro-
vide additional insight into the accuracy of a classifier
and its resilience to subversion.

We tested all combinations of text in matching fields
to identify how the shaper prioritizes them. Figure[2]de-
picts a decision process that captures our observations
for HTTP traffic. The device first examines the content
in the GET request, then it checks the Content-Type
headers from the server response only if the request does
not match any rule.

Importantly, the device exhibits a “match-and-forget”
policy where an entire flow is classified by the highest
priority matching rule even if later packets match a dif-
ferent rule that would lead to more accurate classifica-
tion. For example, if the URI contains /user/youtube
and the Host contains facebook.com, the flow is clas-
sified as YouTube instead of Facebook. Further, the
priority of different matching rules in the GET re-
quest depends both on the field and the content. For

"Note that we cannot confirm whether this is the actual matching
implementation; rather, we can only say that our observations
suggest this is the case.

The first

eyword i
two —» yes URI, Host, no
ser-Agen

packets

yes

‘ Select rule based on matching priority ‘

¥

Keyword in
Content-Type?

yes

l

Application

or
Mobile Browsing

Content-Type

Based HTTP Browsing

Classification

Figure 2: Observed decision process for applying matching rules to HTTP traffic.

example, the FrankenFlow with Host: www.hulu.com
and User-Agent: Pandora is classified depending on
which header appears first in the GET request (i.e., if
Hulu appears first, it is classified as Hulu). In con-
trast, the FrankenFlow with Host: facebook.com and
User-Agent: Pandora is classified as Pandora regard-
less of the order of headers in the GET request.

Our results for classification-rule priorities for all 87
matching keywords in HT'TP traffic are summarized in
Table |3 We find six distinct priority groups, with only
two groups containing more than one service. For exam-
ple, if the URI matches NBC Sports, the classifier will
label the entire flow as NBC Sports, even if the strings
for YouTube, Netflix, or iPlayer also appear in the flow.
When multiple matching strings from the third prior-
ity group appear in the same flow, the device uses yet
another set of tie-breaking priorities, listed in Table [
For example, if Netflix and Facebook appear in the Host
header, then the flow is classified as Netflix regardless
of where in the host field the string netfliz appears (be-
cause Netflix is in a higher priority group). For match-
ing rules in the same tie-breaking group, e.g., Netflix
and LinkedIn, the flow is classified as the first keyword
to appear in the Host string. We found no particular
reason for the priority order found on this device.

The device classifies HTTPS traffic with multiple
matching rules similarly to HT'TP. For example, after
matching on a TLS Client Hello packet, the device
ignores matching rules in the server response.

4. ADDITIONAL CASE STUDIES

We also tested our methodology against two other
traffic shaping devices: a carrier-grade IPS device in our
possession and a deployed device in T-Mobile’s network.

Priority | Matching Field(s) Example Apps | #cases

1 URI NBC Sports 1

2 URI YouTube 1

3 Host header, Netflix, ESPN, 30

User-Agent Pandora

4 Host header Facebook 1

5 URI iPlayer 1
Apple Service,

6 User-agent Android Content, 3
Mobile browsing

Table 3: When a flow triggers multiple matching rules, the
packet shaper classifies the flow according to the rule with
highest priority. Tie-breaking priorities are listed in Table @

Carrier-grade IPS Device (Testbed). Our IPS
device uses coarse-grained classification, e.g., it identi-
fies “streaming video” traffic, but does not identify spe-
cific applications. We tested all our recorded streaming
video traces against the device, and found that it does
not classify any of them as video traffic except for a Net-
flix trace from 2014 (newer Netflix traces are not clas-
sified). In this case, the device matched on the string
ftypmp4 (presumably matching on “file type mp4”) in
the HTTP payload. Interestingly, this is the only case
we found so far that inspect packet content beyond
HTTP headers. We suspect that the poor matching
results are due to the device using outdated rules, in
addition to the fact that the device’s primary purpose
is detecting security threats (and not applications).

T-Mobile’s Binge On Service T-Mobile’s “Binge
On” service allows opt-in subscribers to stream video
content from participating providers without counting
those bytes against their data plan (i.e., such content is
zero-rated). In previous work, Molavi et al. [§] used ad-
hoc techniques to show that T-Mobile identifies Binge-
On-eligible content by inspecting the values in HTTP
Content-Type and Host headers in addition to some
fields of the TLS handshake. The ground truth signal
that traffic is classified as Binge On is that its data is
zero-rated (based on our account’s data-usage counter).
We use this information, along with the methodology
in Section [2] to revisit Binge On—where we have no a
priori knowledge about the vendor or their rules, and
describe new findings below.

As an example of our findings, our analysis re-
vealed that Netflix, which was previously identified us-
ing HTTP traffic, has since moved to HTTPS connec-
tions. Our analysis shows that the T-Mobile classifier
checks the SNI field for the string nf1x and the contents
of the Common Name in the server certificate in the

Tiebreaking Example Apps
Priority
1 NetFlix, LinkedIn, Skype, SkyDrive,
Symantec, Yahoo Video, Gmail
9 Youtube, Instagram, Tango, AmazonCloud,
Kaspersky, EA Games, Wechat
3 Facebook, Yahoo Mail, Zynga

Table 4: When a flow matches multiple rules in the same
priority group in Table [3] the classifier picks the one with
the highest tie-breaking priority. If the flow matches mul-
tiple rules of the same priority, the classifier picks the first
matching string to appear in the flow.

TLS handshake for the value nflxvideo.net. These
highly specific matching fields are surprising, since it
seems likely that such domain names change often and
require significant manual maintenance to ensure reli-
able classification. Interestingly, we further find that
unlike the packet-shaping device in our testbed, T-
Mobile’s classifier parses the TLS handshake and will
not properly detect HTTPS traffic if the TLS packets
are malformed or the value is not in a matching field
(SNT or Common Name).

We investigated priorities when a packet matches
multiple applications and found that T-Mobile matches
only on the last Host header if multiple are present.
Interestingly, this leads to zero-rated traffic if the last
header matches a BingeOn participant, even if other
headers do not. If the first header is, for example, a
Google App Engine domain, Web site content is re-
turned without error even though there are multiple
Host headers. This provides a way to zero-rate arbi-
trary HTTP traffic beyond was was found previously [8].

S. DISCUSSION AND CONCLUSION

In this paper, we presented an efficient approach for
identifying the matching rules used in traffic shapers
for applying policies such as packet shaping, security,
and zero-rating. We showed that using existing appli-
cation traffic facilitates efficient and reliable discovery
of matching rules. We applied this approach to several
devices and found that their approach to classifying the
applications that we tested was surprisingly simple and
generally based on matching text in a small number of
HTTP and HTTPS fields.

Our work on revealing matching rules provides a solid
framework for researchers and regulators to audit im-
plementations of policies in today’s middlebox deploy-
ments, understand their impact on issues such as net-
work performance and net neutrality, and understand
security implications. As part of our future work, we
are investigating other deployments and extending our
analysis to UDP traffic. We expect to further refine our
methodology as we encounter new policies and classifier
implementations not covered by our current approach.

Acknowledgements

We thank the anonymous reviewers and our shepherd
Renata Teixeira for their helpful feedback. This work is
supported in part by a Google Research Award, and
NSF awards CNS-1617728, CNS-1350720, and CNS-
1518845.

6. REFERENCES

(1] Complete MIME types list.

http://www.freeformatter.com/mime-types-list.html.

[2] Neubot — the network neutrality bot.

http://www.neubot.org.

[3] T-Mobile BingeOn. http://www.t-mobile.com/offer/

binge-on-streaming-video.html.

Global DPI market 2014-2018: Key vendors are allot

communications, cisco, procera networks and sandvine.

http://www.prnewswire.com/news-releases/global-dpi-
market-2014-2018-key-vendors-are-allot-
communications-cisco-procera-networks-and-sandvine-

275106991 .html, September 2014.

V. Bashko, N. Melnikov, A. Sehgal, and J. Schonwalder.

Bonafide: A traffic shaping detection tool for mobile

networks. In IFIP/IEEE International Symposium on

Integrated Network Management (IM2013), 2013.

[6] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,

R. Mahajan, and S. Saroiu. Glasnost: Enabling end users
to detect traffic differentiation. In Proc. of USENIX NSDI,
2010.

[7] FCC announces "Measuring Mobile America” program.
http://www.fcc.gov/document/fcc-announces-—
measuring-mobile-america-program.

[8] A. M. Kakhki, F. Li, D. R. Choffnes, E. Katz-Bassett, and
A. Mislove. BingeOn under the microscope: Understanding
t-mobile’s zero-rating implementation. In Proc. of
SIGCOMM Workshop on Internet QoE, 2016.

[9] A. M. Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. R. Choffnes, P. Gill, and A. Mislove. Identifying traffic
differentiation in mobile networks. In Proc. of IMC, 2015.

[10] P. Kanuparthy and C. Dovrolis. ShaperProbe: end-to-end
detection of ISP traffic shaping using active methods. In
Proc. of IMC, 2011.

[11] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In Proc. of IMC,
2010.

[12] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering
performance differences among backbone ISPs with Netdiff.
In Proc. of USENIX NSDI, 2008.

[13] Measurement Lab Consortium. ISP interconnection and its
impact on consumer internet performance. http://wuw.
measurementlab.net/blog/2014_interconnection_report,
October 2014.

[14] A. Nikravesh, H. Yao, S. Xu, D. R. Choffnes, and Z. M.
Mao. Mobilyzer: An open platform for controllable mobile
network measurements. In Proc. of MobiSys, 2015.

[15] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R.
Choffnes. ReCon: Revealing and controlling privacy leaks
in mobile network traffic. In Proc. of MobiSys, 2016.

[16] Switzerland network testing tool. https://www.eff.org/
pages/switzerland-network-testing-tool.

[17] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar.
Detecting network neutrality violations with causal
inference. In CoNEXT, 2009.

[18] N. Weaver, C. Kreibich, M. Dam, and V. Paxson. Here Be
Web Proxies. In Proc. PAM, 2014.

[19] N. Weaver, R. Sommer, and V. Paxson. Detecting forged
TCP reset packets. In Proc. of NDSS, 2009.

[20] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes,
and R. Govindan. Investigating transparent web proxies in
cellular networks. In Proc. PAM, 2015.

[21] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting Traffic
Differentiation in Backbone ISPs with NetPolice. In Proc.
of IMC, 2009.

[22] Z. Zhang, O. Mara, and K. Argyraki. Network neutrality
inference. In Proc. of ACM SIGCOMM, 2014.

[4

[5

http://www.neubot.org
http://www.t-mobile.com/offer/binge-on-streaming-video.html
http://www.t-mobile.com/offer/binge-on-streaming-video.html
http://www.prnewswire.com/news-releases/global-dpi-market-2014-2018-key-vendors-are-allot-communications-cisco-procera-networks-and-sandvine-275106991.html
http://www.prnewswire.com/news-releases/global-dpi-market-2014-2018-key-vendors-are-allot-communications-cisco-procera-networks-and-sandvine-275106991.html
http://www.prnewswire.com/news-releases/global-dpi-market-2014-2018-key-vendors-are-allot-communications-cisco-procera-networks-and-sandvine-275106991.html
http://www.prnewswire.com/news-releases/global-dpi-market-2014-2018-key-vendors-are-allot-communications-cisco-procera-networks-and-sandvine-275106991.html
http://www.fcc.gov/document/fcc-announces-measuring-mobile-america-program
http://www.fcc.gov/document/fcc-announces-measuring-mobile-america-program
http://www.measurementlab.net/blog/2014_interconnection_report
http://www.measurementlab.net/blog/2014_interconnection_report
https://www.eff.org/pages/switzerland-network-testing-tool
https://www.eff.org/pages/switzerland-network-testing-tool

	Introduction
	Methodology
	Dataset
	Identifying Matching Fields
	Revealing Classification Rules
	Building a FrankenFlow
	Extracting Matching Rules
	Rule Prioritization

	Efficiency

	Experimental Results
	Matching Fields
	Matching Rules
	Priority Rules

	Additional Case Studies
	Discussion and Conclusion
	References

