Improving Transparency and Control in Mobile Internet Systems

David Choffnes

Northeastern University

with INRIA, U. Washington, Berkeley, MSR & Stony Brook

Primary focus is reliability and performance

Ono, NEWS, LIFEGUARD [SIGCOMM '06, '08, '10, '12, '13]

Privacy

- Web logins sent in the clear [W-MUST 'I I]
- Traffic analysis resistance [SIGCOMM 'I3]

Measurement

- ISP characterization [NSDI 'I 3]
- View from the edge [CCR '10, SIGCOMM '11]

Mobile systems

- Mobile network characterization [PAM '14 (x2)]
- Improving transparency and control using software middleboxes

A little about my work

Primary focus is reliability and performance

Ono, NEWS, LIFEGUARD [SIGCOMM '06, '08, '10, '12, '13]

Privacy

- Web logins sent in the clear [W-MUST 'I I]
- Traffic analysis resistance [SIGCOMM 'I3]

Measurement

- ISP characterization [NSDI 'I 3]
- View from the edge [CCR '10, SIGCOMM '11]

Mobile systems

- Mobile network characterization [PAM '14 (x2)]
- Improving transparency and control using software middleboxes

A little about my work

Primary focus is reliability and performance

Ono, NEWS, LIFEGUARD [SIGCOMM '06, '08, '10, '12, '13]

Privacy

- Web logins sent in the clear [W-MUST 'I I]
- Traffic analysis resistance [SIGCOMM '13]

Measurement

- ISP characterization [NSDI 'I 3]
- View from the edge [CCR '10, SIGCOMM '11]

Mobile systems

- Mobile network characterization [PAM '14 (x2)]
- Improving transparency and control using software middleboxes

A little about my work

Primary focus is reliability and performance

Ono, NEWS, LIFEGUARD [SIGCOMM '06, '08, '10, '12, '13]

Privacy

2

- Web logins sent in the clear [W-MUST '11]
- Traffic analysis resistance [SIGCOMM '13]

Measurement

- ISP characterization [NSDI '13]
- View from the edge [CCR '10, SIGCOMM '11]

Mobile systems

- Mobile network characterization [PAM '14 (x2)]
- Improving transparency and control using software middleboxes

I'm looking for grad students!

- Tiny powerful computers in our pockets (or purses)
- All kinds of cool apps
- Potentially fast bandwidth
- Keep us connected all the time

- Tiny powerful computers in our pockets (or purses)
- All kinds of cool apps
 - That are doing who knows what with our data/network
- Potentially fast bandwidth
- Keep us connected all the time

- Tiny powerful computers in our pockets (or purses)
- All kinds of cool apps
 - That are doing who knows what with our data/network
- Potentially fast bandwidth
 - But with data caps and spendy plans
- Keep us connected all the time

- Tiny powerful computers in our pockets (or purses)
- All kinds of cool apps
 - That are doing who knows what with our data/network
- Potentially fast bandwidth
 - But with data caps and spendy plans
- Keep us connected all the time
 - Until you take 3 steps to the left
 - Unless your provider decides to block services

Why do these issues persist?

Researchers, operators and end-users lack good tools for understanding and controlling *network* activity from their mobile systems

- Visibility
 - How do we understand mobile network performance?
 - What are apps doing with our data?
 - What are carriers doing to our traffic?

Control

- What can we do about any of these problems?
- How do we deploy a solution?

Outline

Intro

- Goals and Challenges
- Meddle: Software Middleboxes for Mobile
- Mobilyzer: Controllable Mobile Network Measurements
- Wrap up

Focus of this talk

Network interactions from mobile systems

- Most of what mobile devices provide uses the network
- These translate into user-facing problems
 - Has implications for privacy, battery life, service contract cost
- Still poorly understood

Technology

THE BUSINESS AND CULTURE OF OUR DIGITAL LIVES, FROM THE L.A. TIMES

Pandora's Android app gathers personal info, report

says

TECHNOLOGY

T-Mobile Investigates Data-Network Outage

By THOMAS GRYTA

July 3, 2012 1:58 p.m. ET

OCTOBER 24, 2013, 8:03 PM | 📮 10 Comments

LinkedIn's New Mobile App Called 'a Dream for Attackers'

Goals

- Network Characterization
 - What is
 - What if
 - End-to-end (capture view from end systems)
 - Across apps, devices, carriers, over time, over space

Goals

- Network Characterization
 - What is
 - What **if**
 - End-to-end (capture view from end systems)
 - Across apps, devices, carriers, over time, over space

Network Control

- Inject
 - Controlled experiments with active measurements
- Interpose
 - Modify, block, shape existing traffic

Challenges

Measurement cost

Limited quota, battery life

Deployability / Portability

- Limited view from apps
- Constrained by app store policy

Broad coverage

Over time, space, across carriers

Challenges

Measurement cost

Limited quota, battery life

Deployability / Portability

- Limited view from apps
- Constrained by app store policy

Broad coverage

Over time, space, across carriers

Challenges

Measurement cost

Limited quota, battery life

Deployability / Portability

- Limited view from apps
- Constrained by app store policy

Broad coverage

Over time, space, across carriers

Other approaches

Study	Measurement Type	Deployment model	Portability	Coverage
AT&T/ Telefonica	Passive	Instrument carrier network	Any OS	Single carrier
UConn WiFi	Passive	Instrument campus network	Any OS	Single campus WiFi
PhoneLab / TaintDroid	Active / Passive	Custom OS	Android	All traffic
Mobiperf / Speedtest	Active	Арр	Android / iOS	Generated traffic

Other approaches

Study	Measurement Type	Deployment model	Portability	Coverage
AT&T/ Telefonica	Passive	Instrument carrier network	Any OS	Single carrier
UConn WiFi	Passive	Instrument campus network	Any OS	Single campus WiFi
PhoneLab / TaintDroid	Active / Passive	Custom OS	Android	All traffic
Mobiperf / Speedtest	Active	Арр	Android / iOS	Generated traffic

Other approaches

Study	Measurement Type	Deployment model	Portability	Coverage
AT&T/ Telefonica	Passive	Instrument carrier network	Any OS	Single carrier
UConn WiFi	Passive	Instrument campus network	Any OS	Single campus WiFi
PhoneLab / TaintDroid	Active / Passive	Custom OS	Android	All traffic
Mobiperf / Speedtest	Active	Арр	Android / iOS	Generated traffic

Improving Visibility and Control (x2)

Meddle

Passive, pervasive, portable system for measurement and control
Visibility: App traffic, across devices and carriers
Control: Software middleboxes to interpose on traffic

Mobilyzer

Platform for controllable active measurements in mobile networks
Visibility: Active measurements independent of device activity
Control: Experiments that are easy to manage and deploy

Outline

- Intro
- Goals and Challenges
- Meddle: Software Middleboxes for Mobile
- Mobilyzer: Controllable Mobile Network Measurements
- Wrap up

Challenge: Devices are locked down by carriers and OSes

- How do we understand network performance?
- What are apps doing with our data?
- What can we do about it?

Challenge: Devices are locked down by carriers and OSes

- How do we understand network performance?
- What are apps doing with our data?
- What can we do about it?

Opportunity: (almost) all devices support VPNs

- Tunnel traffic to a server we control (the middle)
- Measure, modify, shape or block traffic with user opt-in

Currently building Meddle

- IRB-approved study with real subjects using their own phones
- User incentives (e.g., custom network filtering)

Challenge: Devices are locked down by carriers and OSes

- How do we understand network performance?
- What are apps doing with our data?
- What can we do about it?

Opportunity: (almost) all devices support VPNs

- Tunnel traffic to a server we control (the middle)
- Measure, modify, shape or block traffic with user opt-in

Currently building Meddle

- IRB-approved study with real subjects using their own phones
- User incentives (e.g., custom network filtering)

Challenge: Devices are locked down by carriers and OSes

- How do we understand network performance?
- What are apps doing with our data?
- What can we do about it?

Opportunity: (almost) all devices support VPNs

- Tunnel traffic to a server we control (the middle)
- Measure, modify, shape or block traffic with user opt-in

Currently building Meddle

- IRB-approved study with real subjects using their own phones
- User incentives (e.g., custom network filtering)

Meddle Research Challenges

System design

Network measurement and characterization

Building useful Meddleboxes

Goal: Make it simple to add functionality that allows users to customize meddleboxes

- Interface (input/output streams)
- Composability (correctness)

Goal: Make it simple to add functionality that allows users to customize meddleboxes

- Interface (input/output streams)
- Composability (correctness)
- Scalability (support users globally)

Goal: Make it simple to add functionality that allows users to customize meddleboxes

- Interface (input/output streams)
- Composability (correctness)
- Scalability (support users globally)
- Privacy (Do not reduce protection of data)

Goal: Make it simple to add functionality that allows users to customize meddleboxes

- Interface (input/output streams)
- Composability (correctness)
- Scalability (support users globally)
- Privacy (Do not reduce protection of data)
- Performance (Low cost)

Goal: Make it simple to add functionality that allows users to customize meddleboxes

- Interface (input/output streams)
- Composability (correctness)
- Scalability (support users globally)
- Privacy (Do not reduce protection of data)
- Performance (Low cost)
- Incentives

Current status

Scalability/Correctness

Cloud! Also looking at SDN-based approaches

Performance

- Connection establishment: 0.6 to 2 seconds
- Indirection delay: <10ms (within US)</p>
- Data/power overhead: 10%
 - Could be less with NULL IPSec encryption

Current status

Scalability/Correctness

Cloud! Also looking at SDN-based approaches

Performance

- Connection establishment: 0.6 to 2 seconds
- Indirection delay: <10ms (within US)</p>
- Data/power overhead: 10%
 - Could be less with NULL IPSec encryption
- Privacy
 - IRB-approved study
 - Phase I: Full packet traces, Phase II: Packet headers

Current status

Scalability/Correctness

Cloud! Also looking at SDN-based approaches

Performance

- Connection establishment: 0.6 to 2 seconds
- Indirection delay: <10ms (within US)</p>
- Data/power overhead: 10%
 - Could be less with NULL IPSec encryption
- Privacy
 - IRB-approved study
 - Phase I: Full packet traces, Phase II: Packet headers

Incentives

Ad blocking, tracking the trackers, Web proxying

Meddle Research Challenges

System design

Network measurement and characterization

Building useful Meddleboxes

Current deployment

25 devices, mainly in US and France

- Recently added 80+ in China (h/t Kaigui Bian, Wenjun Hu)
- I5 iOS, 10 Android
- 202 days of data

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models
- Should we always offload to WiFi?
 - WiFi and LTE latencies are nearly identical
 - Several devices consistently have better performance over cell

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models
- Should we always offload to WiFi?
 - WiFi and LTE latencies are nearly identical
 - Several devices consistently have better performance over cell

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models
- Should we always offload to WiFi?
 - WiFi and LTE latencies are nearly identical
 - Several devices consistently have better performance over cell

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models
- Should we always offload to WiFi?
 - WiFi and LTE latencies are nearly identical
 - Several devices consistently have better performance over cell

- How much privacy is there?
 - Majority of TCP flows (70%) encrypted
 - These cannot be compressed by traditional middleboxes

- Do we lose much by monitoring only WiFi or only cell?
 - Yes: 60/40 split between the two, different usage models
- Should we always offload to WiFi?
 - WiFi and LTE latencies are nearly identical
 - Several devices consistently have better performance over cell

- Do we need coverage across OSes, regions?
 - Yes: Apps, and how you identify them, differ substantially

iOS in Western countries

Android in Western countries

Popular user agents differ across OSes

- Do we need coverage across OSes, regions?
 - Yes: Apps, and how you identify them, differ substantially

iOS in Western countries

Android in Western countries

Android in China

Do we need coverage across OSes, regions?

Yes: Apps, and how you identify them, differ substantially

Android in Western countries

Android in China

- Do we need coverage across OSes, regions?
 - Yes: Apps, and how you identify them, differ substantially

iOS in Western countries

Android in Western countries

Meddle Research Challenges

System design

Network measurement and characterization

Building useful Meddleboxes

Meddleboxes under development

Improving performance

- Optimizing Web pages for mobile networks
- Moving expensive network communication to the cloud

Meddleboxes under development

Improving performance

- Optimizing Web pages for mobile networks
- Moving expensive network communication to the cloud
- Revealing privacy policies
 - Searches sent in clear (iOS < 6, Android pre JellyBean)</p>
 - Extensive IMEI, AndriodID and location leakage (5-20% of apps)
 - E-mail, name, contacts, and even password sent in the clear!

Fraction of apps leaking PII

Mobile Internet Systems

Fraction of apps leaking PII

Mobile Internet Systems

Fraction of apps leaking PII

Mobile Internet Systems

Meddleboxes under development

- Informing public policy
 - Detect differential treatment for traffic
 - Identify ISP interference, injection of traffic (Web Tripnets)
 - Understand differences across carriers, countries (e.g., China)

Detecting ISP interference with TripNets

Meddle ConVis Reveals and Blocks Tracking

00 daemonfstudios.com/demo: × C daemonfstudios.com/demos/meddleVis/?graph_url=demo.json Meddle -Connection Visualization Meddle makes it easy to see who your apps are talking to: Each circle with a shadow is an app All other nodes are web services Lines show the connections each app makes Red circles are sites known to 0! track users. · Size shows how often each app or site is used Explore the graph: ٠ Drag an empty part of the graph to \odot move Scroll the mouse wheel to zoom · Click a link to ban it Hover to show only direct. 0 connections **Best viewed in Google Chrome**

Meddle Wrap up

- Meddle offers a new opportunity to experiment with middleboxes for mobile systems
 - Currently expanding our set of users
 - Building out several meddlebox systems

Concluding remarks

Most (mobile) network systems problems relate to lack of **visibility** and **control**

Visibility:

- Gather measurements from the end system perspective
- Build systems with incentives, low barrier to entry

Control:

- Meddle: Indirection + software middleboxes
- Mobilyzer: Coordinated active measurements at scale

Meddle

 Ashwin Rao, Arnaud Legout (INRIA), Justine Sherry, Amy Tang (Berkeley), Wenjun Hu (MSRA), Arvind Krishnamurthy (UW), Arash Kakhki, Alan Mislove (NEU), Abbas Razzaghpanah, Phillipa Gill (Stony Brook)

Mobilyzer

 Morley Mao (UMich), Kyriakos Zarifis, Tobi Flach, Srikanth Nori, Ethan Katz-Bassett, Ramesh Govindan (USC), Matt Welsh (Google), Dominic Hamon (M-Lab), Nick Feamster (GaTech)

Support

Google, M-Lab, NSF, CI Fellowship